Cargando…
High-Resolution Aerial Imagery Semantic Labeling with Dense Pyramid Network
Semantic segmentation of high-resolution aerial images is of great importance in certain fields, but the increasing spatial resolution brings large intra-class variance and small inter-class differences that can lead to classification ambiguities. Based on high-level contextual features, the deep co...
Autores principales: | Pan, Xuran, Gao, Lianru, Zhang, Bing, Yang, Fan, Liao, Wenzhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263496/ https://www.ncbi.nlm.nih.gov/pubmed/30400591 http://dx.doi.org/10.3390/s18113774 |
Ejemplares similares
-
Object Detection in Very High-Resolution Aerial Images Using One-Stage Densely Connected Feature Pyramid Network
por: Tayara, Hilal, et al.
Publicado: (2018) -
Group Sparse Representation Based on Nonlocal Spatial and Local Spectral Similarity for Hyperspectral Imagery Classification
por: Yu, Haoyang, et al.
Publicado: (2018) -
A Comparison of Dense and Sparse Optical Flow Techniques for Low-Resolution Aerial Thermal Imagery
por: Nguyen, Tran Xuan Bach, et al.
Publicado: (2022) -
A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery
por: Huang, Huasheng, et al.
Publicado: (2018) -
Adaptively Dense Feature Pyramid Network for Object Detection
por: PAN, HAODONG, et al.
Publicado: (2019)