Cargando…
A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
Anomaly detection aims to separate anomalous pixels from the background, and has become an important application of remotely sensed hyperspectral image processing. Anomaly detection methods based on low-rank and sparse representation (LRASR) can accurately detect anomalous pixels. However, with the...
Autores principales: | Zhang, Yi, Wu, Zebin, Sun, Jin, Zhang, Yan, Zhu, Yaoqin, Liu, Jun, Zang, Qitao, Plaza, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263513/ https://www.ncbi.nlm.nih.gov/pubmed/30366454 http://dx.doi.org/10.3390/s18113627 |
Ejemplares similares
-
Multi-Scale Superpixels Dimension Reduction Hyperspectral Image Classification Algorithm Based on Low Rank Sparse Representation Joint Hierarchical Recursive Filtering
por: Qu, Shenming, et al.
Publicado: (2021) -
Low-Rank and Sparse Matrix Recovery for Hyperspectral Image Reconstruction Using Bayesian Learning
por: Zhang, Yanbin, et al.
Publicado: (2022) -
Low-Rank and Eigenface Based Sparse Representation for Face Recognition
por: Hou, Yi-Fu, et al.
Publicado: (2014) -
Weighted Sparseness-Based Anomaly Detection for Hyperspectral Imagery
por: Lian, Xing, et al.
Publicado: (2023) -
A Robust Sparse Representation Model for Hyperspectral Image Classification †
por: Huang, Shaoguang, et al.
Publicado: (2017)