Cargando…
Iss2Image: A Novel Signal-Encoding Technique for CNN-Based Human Activity Recognition
The most significant barrier to success in human activity recognition is extracting and selecting the right features. In traditional methods, the features are chosen by humans, which requires the user to have expert knowledge or to do a large amount of empirical study. Newly developed deep learning...
Autores principales: | Hur, Taeho, Bang, Jaehun, Huynh-The, Thien, Lee, Jongwon, Kim, Jee-In, Lee, Sungyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263516/ https://www.ncbi.nlm.nih.gov/pubmed/30428600 http://dx.doi.org/10.3390/s18113910 |
Ejemplares similares
-
Adaptive Data Boosting Technique for Robust Personalized Speech Emotion in Emotionally-Imbalanced Small-Sample Environments
por: Bang, Jaehun, et al.
Publicado: (2018) -
Smartphone Location-Independent Physical Activity Recognition Based on Transportation Natural Vibration Analysis
por: Hur, Taeho, et al.
Publicado: (2017) -
Human Behavior Analysis by Means of Multimodal Context Mining
por: Banos, Oresti, et al.
Publicado: (2016) -
uEFS: An efficient and comprehensive ensemble-based feature selection methodology to select informative features
por: Ali, Maqbool, et al.
Publicado: (2018) -
A Multimodal Deep Log-Based User Experience (UX) Platform for UX Evaluation
por: Hussain, Jamil, et al.
Publicado: (2018)