Cargando…
Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery
Urban land cover and land use mapping plays an important role in urban planning and management. In this paper, novel multi-scale deep learning models, namely ASPP-Unet and ResASPP-Unet are proposed for urban land cover classification based on very high resolution (VHR) satellite imagery. The propose...
Autores principales: | Zhang, Pengbin, Ke, Yinghai, Zhang, Zhenxin, Wang, Mingli, Li, Peng, Zhang, Shuangyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263528/ https://www.ncbi.nlm.nih.gov/pubmed/30388781 http://dx.doi.org/10.3390/s18113717 |
Ejemplares similares
-
Enabling country-scale land cover mapping with meter-resolution satellite imagery
por: Tong, Xin-Yi, et al.
Publicado: (2023) -
Using ASTER Imagery in Land Use/cover Classification of Eastern Mediterranean Landscapes According to CORINE Land Cover Project
por: Yüksel, Alaaddin, et al.
Publicado: (2008) -
Scale Effect of Land Cover Classification from Multi-Resolution Satellite Remote Sensing Data
por: Li, Runxiang, et al.
Publicado: (2023) -
Mapping land cover on Reunion Island in 2017 using satellite imagery and geospatial ground data
por: Dupuy, Stéphane, et al.
Publicado: (2019) -
Graph Neural Network-Based Method of Spatiotemporal Land Cover Mapping Using Satellite Imagery
por: Kavran, Domen, et al.
Publicado: (2023)