Cargando…
Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation
An ordinary optical fiber ultra-high temperature sensor based on infrared radiation with the advantages of simple structure and compact is presented. The sensing system consists of a detection fiber and a common transmission fiber. The detector fiber is formed by annealing a piece of ordinary fiber...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263532/ https://www.ncbi.nlm.nih.gov/pubmed/30469408 http://dx.doi.org/10.3390/s18114071 |
Sumario: | An ordinary optical fiber ultra-high temperature sensor based on infrared radiation with the advantages of simple structure and compact is presented. The sensing system consists of a detection fiber and a common transmission fiber. The detector fiber is formed by annealing a piece of ordinary fiber at high temperature twice, which changes the properties of the fiber and breaks the temperature limit of ordinary fiber. The transmission fiber is a bending insensitive optical fiber. A static calibration system was set up to determine the performance of the sensor and three heating experiments were carried out. The temperature response sensitivities were 0.010 dBm/K, 0.009 dBm/K and 0.010 dBm/K, respectively, which indicate that the sensor has good repeatability. The sensor can withstand a high temperature of 1823 K for 58 h with an error of less than 1%. The main reason why the developed ordinary optical fiber sensor can work steadily for a long time at high temperature is the formation of β-cristobalite, which is stable at high-temperature. |
---|