Cargando…

GROF: Indoor Localization Using a Multiple-Bandwidth General Regression Neural Network and Outlier Filter

In recent years, a variety of methods have been developed for indoor localization utilizing fingerprints of received signal strength (RSS) that are location dependent. Nevertheless, the RSS is sensitive to environmental variations, in that the resulting fluctuation severely degrades the localization...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Zhang, Wang, Jinlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263617/
https://www.ncbi.nlm.nih.gov/pubmed/30388845
http://dx.doi.org/10.3390/s18113723
Descripción
Sumario:In recent years, a variety of methods have been developed for indoor localization utilizing fingerprints of received signal strength (RSS) that are location dependent. Nevertheless, the RSS is sensitive to environmental variations, in that the resulting fluctuation severely degrades the localization accuracy. Furthermore, the fingerprints survey course is time-consuming and labor-intensive. Therefore, the lightweight fingerprint-based indoor positioning approach is preferred for practical applications. In this paper, a novel multiple-bandwidth generalized regression neural network (GRNN) with the outlier filter indoor positioning approach (GROF) is proposed. The GROF method is based on the GRNN, for which we adopt a new kind of multiple-bandwidth kernel architecture to achieve a more flexible regression performance than that of the traditional GRNN. In addition, an outlier filtering scheme adopting the k-nearest neighbor (KNN) method is embedded into the localization module so as to improve the localization robustness against environmental changes. We discuss the multiple-bandwidth spread value training process and the outlier filtering algorithm, and demonstrate the feasibility and performance of GROF through experiment data, using a Universal Software Radio Peripheral (USRP) platform. The experimental results indicate that the GROF method outperforms the positioning methods, based on the standard GRNN, KNN, or backpropagation neural network (BPNN), both in localization accuracy and robustness, without the extra training sample requirement.