Cargando…
GROF: Indoor Localization Using a Multiple-Bandwidth General Regression Neural Network and Outlier Filter
In recent years, a variety of methods have been developed for indoor localization utilizing fingerprints of received signal strength (RSS) that are location dependent. Nevertheless, the RSS is sensitive to environmental variations, in that the resulting fluctuation severely degrades the localization...
Autores principales: | Chen, Zhang, Wang, Jinlong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263617/ https://www.ncbi.nlm.nih.gov/pubmed/30388845 http://dx.doi.org/10.3390/s18113723 |
Ejemplares similares
-
Wireless Indoor Localization Using Convolutional Neural Network and Gaussian Process Regression
por: Zhang, Guolong, et al.
Publicado: (2019) -
Rank regression: an alternative regression approach for data with outliers
por: CHEN, Tian, et al.
Publicado: (2014) -
Convolutional Neural Network-Based Discriminator for Outlier Detection
por: Alharbi, Fahad, et al.
Publicado: (2021) -
Novel indoor positioning system based on ultra-wide bandwidth
por: Wei, Zhen, et al.
Publicado: (2020) -
Find Outliers of Image Edge Consistency by Weighted Local Linear Regression with Equality Constraints †
por: Zhu, Mingzhu, et al.
Publicado: (2021)