Cargando…
Generative Adversarial Networks-Based Semi-Supervised Automatic Modulation Recognition for Cognitive Radio Networks
With the recently explosive growth of deep learning, automatic modulation recognition has undergone rapid development. Most of the newly proposed methods are dependent on large numbers of labeled samples. We are committed to using fewer labeled samples to perform automatic modulation recognition in...
Autores principales: | Li, Mingxuan, Li, Ou, Liu, Guangyi, Zhang, Ce |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263619/ https://www.ncbi.nlm.nih.gov/pubmed/30428617 http://dx.doi.org/10.3390/s18113913 |
Ejemplares similares
-
Hardness Recognition of Robotic Forearm Based on Semi-supervised Generative Adversarial Networks
por: Qian, Xiaoliang, et al.
Publicado: (2019) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Quantum semi-supervised generative adversarial network for enhanced data classification
por: Nakaji, Kouhei, et al.
Publicado: (2021) -
Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition
por: Gao, Fei, et al.
Publicado: (2018) -
An Intelligent Fault Diagnosis Based on Adversarial Generating Module and Semi-supervised Convolutional Neural Network
por: Ye, Qing, et al.
Publicado: (2022)