Cargando…
Edge and Fog Computing Platform for Data Fusion of Complex Heterogeneous Sensors
The explosion of the Internet of Things has dramatically increased the data load on networks that cannot indefinitely increment their capacity to support these new services. Edge computing is a viable approach to fuse and process data on sensor platforms so that information can be created locally. H...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263625/ https://www.ncbi.nlm.nih.gov/pubmed/30366462 http://dx.doi.org/10.3390/s18113630 |
Sumario: | The explosion of the Internet of Things has dramatically increased the data load on networks that cannot indefinitely increment their capacity to support these new services. Edge computing is a viable approach to fuse and process data on sensor platforms so that information can be created locally. However, the integration of complex heterogeneous sensors producing a great amount of diverse data opens new challenges to be faced. Rather than generating usable data straight away, complex sensors demand prior calculations to supply meaningful information. In addition, the integration of complex sensors in real applications requires a coordinated development from hardware and software teams that need a common framework to reduce development times. In this work, we present an edge and fog computing platform capable of providing seamless integration of complex sensors, with the implementation of an efficient data fusion strategy. It uses a symbiotic hardware/software design approach based on a novel messaging system running on a modular hardware platform. We have applied this platform to integrate Bluetooth vehicle identifiers and radar counters in a specific mobility use case, which exhibits an effective end-to-end integration using the proposed solution. |
---|