Cargando…

Frequency Offset Tolerant Synchronization Signal Design in NB-IoT

Timing detection is the first step and very important in wireless communication systems. Timing detection performance is usually affected by the frequency offset. Therefore, it is a challenge to design the synchronization signal in massive narrowband Internet of Things (NB-IoT) scenarios where the f...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Jun, Xu, Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263640/
https://www.ncbi.nlm.nih.gov/pubmed/30469443
http://dx.doi.org/10.3390/s18114077
Descripción
Sumario:Timing detection is the first step and very important in wireless communication systems. Timing detection performance is usually affected by the frequency offset. Therefore, it is a challenge to design the synchronization signal in massive narrowband Internet of Things (NB-IoT) scenarios where the frequency offset is usually large due to the low cost requirement. In this paper, we firstly proposed a new general synchronization signal structure with a couple of sequences which are conjugated to remove the potential timing error that arises from large frequency offset. Then, we analyze the suitable sequence for our proposed synchronization signal structure and discuss a Zadoff–Chu (ZC) sequence with root 1 as an example. Finally, the simulation results demonstrate that our proposed synchronization signal can work well when the frequency offset is large. It means that our proposed synchronization signal design is very suitable for the massive NB-IoT.