Cargando…
Deep CNNs with Robust LBP Guiding Pooling for Face Recognition
Pooling layer in Convolutional Neural Networks (CNNs) is designed to reduce dimensions and computational complexity. Unfortunately, CNN is easily disturbed by noise in images when extracting features from input images. The traditional pooling layer directly samples the input feature maps without con...
Autores principales: | Ma, Zhongjian, Ding, Yuanyuan, Li, Baoqing, Yuan, Xiaobing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263647/ https://www.ncbi.nlm.nih.gov/pubmed/30423850 http://dx.doi.org/10.3390/s18113876 |
Ejemplares similares
-
A High Precision Feature Based on LBP and Gabor Theory for Face Recognition
por: Xia, Wei, et al.
Publicado: (2013) -
Fast and accurate face recognition system using MORSCMs-LBP on embedded circuits
por: Hosny, Khalid M., et al.
Publicado: (2022) -
miLBP: a robust and fast modality-independent 3D LBP for multimodal deformable registration
por: Jiang, Dongsheng, et al.
Publicado: (2016) -
Facial Expression Recognition with LBP and ORB Features
por: Niu, Ben, et al.
Publicado: (2021) -
TbsNet: the importance of thin-branch structures in CNNs
por: Hu, Xiujian, et al.
Publicado: (2023)