Cargando…
Sensor-Based Safety Performance Assessment of Individual Construction Workers
Over the last decade, researchers have explored various technologies and methodologies to enhance worker safety at construction sites. The use of advanced sensing technologies mainly has focused on detecting and warning about safety issues by directly relying on the detection capabilities of these t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263670/ https://www.ncbi.nlm.nih.gov/pubmed/30424558 http://dx.doi.org/10.3390/s18113897 |
Sumario: | Over the last decade, researchers have explored various technologies and methodologies to enhance worker safety at construction sites. The use of advanced sensing technologies mainly has focused on detecting and warning about safety issues by directly relying on the detection capabilities of these technologies. Until now, very little research has explored methods to quantitatively assess individual workers’ safety performance. For this, this study uses a tracking system to collect and use individuals’ location data in the proposed safety framework. A computational and analytical procedure/model was developed to quantify the safety performance of individual workers beyond detection and warning. The framework defines parameters for zone-based safety risks and establishes a zone-based safety risk model to quantify potential risks to workers. To demonstrate the model of safety analysis, the study conducted field tests at different construction sites, using various interaction scenarios. Probabilistic evaluation showed a slight underestimation and overestimation in certain cases; however, the model represented the overall safety performance of a subject quite well. Test results showed clear evidence of the model’s ability to capture safety conditions of workers in pre-identified hazard zones. The developed approach presents a way to provide visualized and quantified information as a form of safety index, which has not been available in the industry. In addition, such an automated method may present a suitable safety monitoring method that can eliminate human deployment that is expensive, error-prone, and time-consuming. |
---|