Cargando…
Streaming MASSIF: Cascading Reasoning for Efficient Processing of IoT Data Streams
In the Internet of Things (IoT), multiple sensors and devices are generating heterogeneous streams of data. To perform meaningful analysis over multiple of these streams, stream processing needs to support expressive reasoning capabilities to infer implicit facts and temporal reasoning to capture te...
Autores principales: | Bonte, Pieter, Tommasini, Riccardo, Della Valle, Emanuele, De Turck, Filip, Ongenae, Femke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263684/ https://www.ncbi.nlm.nih.gov/pubmed/30413104 http://dx.doi.org/10.3390/s18113832 |
Ejemplares similares
-
Bridging the gap between expressivity and efficiency in stream reasoning: a structural caching approach for IoT streams
por: Bonte, Pieter, et al.
Publicado: (2022) -
Towards a Cascading Reasoning Framework to Support Responsive Ambient-Intelligent Healthcare Interventions
por: De Brouwer, Mathias, et al.
Publicado: (2018) -
Develop streaming pipelines and analytics solutions for CERN’s IoT Platform
por: Quintero Vallejos, Natacha Andrea
Publicado: (2018) -
Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware IoT Devices Using Reinforcement Learning
por: Habeeb, Fawzy, et al.
Publicado: (2022) -
IoT-Stream: A Lightweight Ontology for Internet of Things Data Streams and Its Use with Data Analytics and Event Detection Services †
por: Elsaleh, Tarek, et al.
Publicado: (2020)