Cargando…
NLOS Identification in WLANs Using Deep LSTM with CNN Features
Identifying channel states as line-of-sight or non-line-of-sight helps to optimize location-based services in wireless communications. The received signal strength identification and channel state information are used to estimate channel conditions for orthogonal frequency division multiplexing syst...
Autores principales: | Nguyen, Viet-Hung, Nguyen, Minh-Tuan, Choi, Jeongsik, Kim, Yong-Hwa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263707/ https://www.ncbi.nlm.nih.gov/pubmed/30463383 http://dx.doi.org/10.3390/s18114057 |
Ejemplares similares
-
Research on DNA-Binding Protein Identification Method Based on LSTM-CNN Feature Fusion
por: Lu, Weizhong, et al.
Publicado: (2022) -
A Deep CNN-LSTM Framework for Fast Video Coding
por: Bouaafia, Soulef, et al.
Publicado: (2020) -
ECG signal classification based on deep CNN and BiLSTM
por: Cheng, Jinyong, et al.
Publicado: (2021) -
Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
por: Cwalina, Krzysztof K., et al.
Publicado: (2019) -
Indoor Smartphone Localization Based on LOS and NLOS Identification
por: Jo, Hyeon Jeong, et al.
Publicado: (2018)