Cargando…
SCFSen: A Sensor Node for Regional Soil Carbon Flux Monitoring
Estimation of regional soil carbon flux is very important for the study of the global carbon cycle. The spatial heterogeneity of soil respiration prevents the actual status of regional soil carbon flux from being revealed by measurements of only one or a few spatial sampling positions, which are usu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263711/ https://www.ncbi.nlm.nih.gov/pubmed/30453497 http://dx.doi.org/10.3390/s18113986 |
Sumario: | Estimation of regional soil carbon flux is very important for the study of the global carbon cycle. The spatial heterogeneity of soil respiration prevents the actual status of regional soil carbon flux from being revealed by measurements of only one or a few spatial sampling positions, which are usually used by traditional studies for the limitation of measurement instruments, so measuring in many spatial positions is very necessary. However, the existing instruments are expensive and cannot communicate with each other, which prevents them from meeting the requirement of synchronous measurements in multiple positions. Therefore, we designed and implemented an instrument for soil carbon flux measuring based on dynamic chamber method, SCFSen, which can measure soil carbon flux and communicate with each other to construct a sensor network. In its working stage, a SCFSen node measures the concentration of carbon in the chamber with an infrared carbon dioxide sensor for certain times periodically, and then the changing rate of the measurements is calculated, which can be converted to the corresponding value of soil carbon flux in the position during the short period. A wireless sensor network system using SCFSens as soil carbon flux sensing nodes can carry out multi-position measurements synchronously, so as to obtain the spatial heterogeneity of soil respiration. Furthermore, the sustainability of such a wireless sensor network system makes the temporal variability of regional soil carbon flux can also be obtained. So SCFSen makes thorough monitoring and accurate estimation of regional soil carbon flux become more feasible. |
---|