Cargando…
Research on Detection and Location of Fluid-Filled Pipeline Leakage Based on Acoustic Emission Technology
Because of the inconvenience of installing sensors in a buried pipeline, an acoustic emission sensor is initially proposed for collecting and analyzing leakage signals inside the pipeline. Four operating conditions of a fluid-filled pipeline are established and a support vector machine (SVM) method...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263715/ https://www.ncbi.nlm.nih.gov/pubmed/30366458 http://dx.doi.org/10.3390/s18113628 |
_version_ | 1783375348668301312 |
---|---|
author | Pan, Shengshan Xu, Zhengdan Li, Dongsheng Lu, Dang |
author_facet | Pan, Shengshan Xu, Zhengdan Li, Dongsheng Lu, Dang |
author_sort | Pan, Shengshan |
collection | PubMed |
description | Because of the inconvenience of installing sensors in a buried pipeline, an acoustic emission sensor is initially proposed for collecting and analyzing leakage signals inside the pipeline. Four operating conditions of a fluid-filled pipeline are established and a support vector machine (SVM) method is used to accurately classify the leakage condition of the pipeline. Wavelet decomposition and empirical mode decomposition (EMD) methods are initially used in denoising these signals to address the problem in which original leakage acoustic emission signals contain too much noise. Signals with more information and energy are then reconstructed. The time-delay estimation method is finally used to accurately locate the leakage source in the pipeline. The results show that by using SVM, wavelet decomposition and EMD methods, leakage detection in a liquid-filled pipe with built-in acoustic emission sensors is effective and accurate and provides a reference value for real-time online monitoring of pipeline operational status with broad application prospects. |
format | Online Article Text |
id | pubmed-6263715 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62637152018-12-12 Research on Detection and Location of Fluid-Filled Pipeline Leakage Based on Acoustic Emission Technology Pan, Shengshan Xu, Zhengdan Li, Dongsheng Lu, Dang Sensors (Basel) Article Because of the inconvenience of installing sensors in a buried pipeline, an acoustic emission sensor is initially proposed for collecting and analyzing leakage signals inside the pipeline. Four operating conditions of a fluid-filled pipeline are established and a support vector machine (SVM) method is used to accurately classify the leakage condition of the pipeline. Wavelet decomposition and empirical mode decomposition (EMD) methods are initially used in denoising these signals to address the problem in which original leakage acoustic emission signals contain too much noise. Signals with more information and energy are then reconstructed. The time-delay estimation method is finally used to accurately locate the leakage source in the pipeline. The results show that by using SVM, wavelet decomposition and EMD methods, leakage detection in a liquid-filled pipe with built-in acoustic emission sensors is effective and accurate and provides a reference value for real-time online monitoring of pipeline operational status with broad application prospects. MDPI 2018-10-25 /pmc/articles/PMC6263715/ /pubmed/30366458 http://dx.doi.org/10.3390/s18113628 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pan, Shengshan Xu, Zhengdan Li, Dongsheng Lu, Dang Research on Detection and Location of Fluid-Filled Pipeline Leakage Based on Acoustic Emission Technology |
title | Research on Detection and Location of Fluid-Filled Pipeline Leakage Based on Acoustic Emission Technology |
title_full | Research on Detection and Location of Fluid-Filled Pipeline Leakage Based on Acoustic Emission Technology |
title_fullStr | Research on Detection and Location of Fluid-Filled Pipeline Leakage Based on Acoustic Emission Technology |
title_full_unstemmed | Research on Detection and Location of Fluid-Filled Pipeline Leakage Based on Acoustic Emission Technology |
title_short | Research on Detection and Location of Fluid-Filled Pipeline Leakage Based on Acoustic Emission Technology |
title_sort | research on detection and location of fluid-filled pipeline leakage based on acoustic emission technology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263715/ https://www.ncbi.nlm.nih.gov/pubmed/30366458 http://dx.doi.org/10.3390/s18113628 |
work_keys_str_mv | AT panshengshan researchondetectionandlocationoffluidfilledpipelineleakagebasedonacousticemissiontechnology AT xuzhengdan researchondetectionandlocationoffluidfilledpipelineleakagebasedonacousticemissiontechnology AT lidongsheng researchondetectionandlocationoffluidfilledpipelineleakagebasedonacousticemissiontechnology AT ludang researchondetectionandlocationoffluidfilledpipelineleakagebasedonacousticemissiontechnology |