Cargando…
An Intelligent Fault Diagnosis Method for Bearings with Variable Rotating Speed Based on Pythagorean Spatial Pyramid Pooling CNN
Deep learning methods have been introduced for fault diagnosis of rotating machinery. Most methods have good performance when processing bearing data at a certain rotating speed. However, most rotating machinery in industrial practice has variable working speed. When processing the bearing data with...
Autores principales: | Guo, Sheng, Yang, Tao, Gao, Wei, Zhang, Chen, Zhang, Yanping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263722/ https://www.ncbi.nlm.nih.gov/pubmed/30424001 http://dx.doi.org/10.3390/s18113857 |
Ejemplares similares
-
Improved Variational Mode Decomposition and CNN for Intelligent Rotating Machinery Fault Diagnosis
por: Xiao, Qiyang, et al.
Publicado: (2022) -
CNN Hardware Accelerator for Real-Time Bearing Fault Diagnosis
por: Chung, Ching-Che, et al.
Publicado: (2023) -
A Fault Diagnostic Scheme Based on Capsule Network for Rolling Bearing under Different Rotational Speeds
por: Li, Linjie, et al.
Publicado: (2020) -
An Imbalanced Fault Diagnosis Method Based on TFFO and CNN for Rotating Machinery
por: Zhang, Long, et al.
Publicado: (2022) -
Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing
por: Shao, Xiaorui, et al.
Publicado: (2022)