Cargando…

Scaling Effect of Fused ASTER-MODIS Land Surface Temperature in an Urban Environment

There is limited research in land surface temperatures (LST) simulation using image fusion techniques, especially studies addressing the downscaling effect of LST image fusion. LST simulation and associated downscaling effect can potentially benefit the thermal studies requiring both high spatial an...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Hua, Weng, Qihao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263748/
https://www.ncbi.nlm.nih.gov/pubmed/30463390
http://dx.doi.org/10.3390/s18114058
_version_ 1783375353750749184
author Liu, Hua
Weng, Qihao
author_facet Liu, Hua
Weng, Qihao
author_sort Liu, Hua
collection PubMed
description There is limited research in land surface temperatures (LST) simulation using image fusion techniques, especially studies addressing the downscaling effect of LST image fusion. LST simulation and associated downscaling effect can potentially benefit the thermal studies requiring both high spatial and temporal resolutions. This study simulated LSTs based on observed Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) LST imagery with Spatial and Temporal Adaptive Reflectance Fusion Model, and investigated the downscaling effect of LST image fusion at 15, 30, 60, 90, 120, 250, 500, and 1000 m spatial resolutions. The study area partially covered the City of Los Angeles, California, USA, and surrounding areas. The reference images (observed ASTER and MODIS LST imagery) were acquired on 04/03/2007 and 07/01/2007, with simulated LSTs produced for 4/28/2007. Three image resampling methods (Cubic Convolution, Bilinear Interpolation, and Nearest Neighbor) were used during the downscaling and upscaling processes, and the resulting LST simulations were compared. Results indicated that the observed ASTER LST and simulated ASTER LST images (date 04/28/2007, spatial resolution 90 m) had high agreement in terms of spatial variations and basic statistics based on a comparison between the observed and simulated ASTER LST maps. Urban developed lands possessed higher LSTs with lighter tones and mountainous areas showed dark tones with lower LSTs. The Cubic Convolution and Bilinear Interpolation resampling methods yielded better results over Nearest Neighbor resampling method across the scales from 15 to 1000 m. The simulated LSTs with image fusion can be used as valuable inputs in heat related studies that require frequent LST measurements with fine spatial resolutions, e.g., seasonal movements of urban heat islands, monthly energy budget assessment, and temperature-driven epidemiology. The observation of scale-independency of the proposed image fusion method can facilitate with image selections of LST studies at various locations.
format Online
Article
Text
id pubmed-6263748
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-62637482018-12-12 Scaling Effect of Fused ASTER-MODIS Land Surface Temperature in an Urban Environment Liu, Hua Weng, Qihao Sensors (Basel) Article There is limited research in land surface temperatures (LST) simulation using image fusion techniques, especially studies addressing the downscaling effect of LST image fusion. LST simulation and associated downscaling effect can potentially benefit the thermal studies requiring both high spatial and temporal resolutions. This study simulated LSTs based on observed Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) LST imagery with Spatial and Temporal Adaptive Reflectance Fusion Model, and investigated the downscaling effect of LST image fusion at 15, 30, 60, 90, 120, 250, 500, and 1000 m spatial resolutions. The study area partially covered the City of Los Angeles, California, USA, and surrounding areas. The reference images (observed ASTER and MODIS LST imagery) were acquired on 04/03/2007 and 07/01/2007, with simulated LSTs produced for 4/28/2007. Three image resampling methods (Cubic Convolution, Bilinear Interpolation, and Nearest Neighbor) were used during the downscaling and upscaling processes, and the resulting LST simulations were compared. Results indicated that the observed ASTER LST and simulated ASTER LST images (date 04/28/2007, spatial resolution 90 m) had high agreement in terms of spatial variations and basic statistics based on a comparison between the observed and simulated ASTER LST maps. Urban developed lands possessed higher LSTs with lighter tones and mountainous areas showed dark tones with lower LSTs. The Cubic Convolution and Bilinear Interpolation resampling methods yielded better results over Nearest Neighbor resampling method across the scales from 15 to 1000 m. The simulated LSTs with image fusion can be used as valuable inputs in heat related studies that require frequent LST measurements with fine spatial resolutions, e.g., seasonal movements of urban heat islands, monthly energy budget assessment, and temperature-driven epidemiology. The observation of scale-independency of the proposed image fusion method can facilitate with image selections of LST studies at various locations. MDPI 2018-11-20 /pmc/articles/PMC6263748/ /pubmed/30463390 http://dx.doi.org/10.3390/s18114058 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Hua
Weng, Qihao
Scaling Effect of Fused ASTER-MODIS Land Surface Temperature in an Urban Environment
title Scaling Effect of Fused ASTER-MODIS Land Surface Temperature in an Urban Environment
title_full Scaling Effect of Fused ASTER-MODIS Land Surface Temperature in an Urban Environment
title_fullStr Scaling Effect of Fused ASTER-MODIS Land Surface Temperature in an Urban Environment
title_full_unstemmed Scaling Effect of Fused ASTER-MODIS Land Surface Temperature in an Urban Environment
title_short Scaling Effect of Fused ASTER-MODIS Land Surface Temperature in an Urban Environment
title_sort scaling effect of fused aster-modis land surface temperature in an urban environment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263748/
https://www.ncbi.nlm.nih.gov/pubmed/30463390
http://dx.doi.org/10.3390/s18114058
work_keys_str_mv AT liuhua scalingeffectoffusedastermodislandsurfacetemperatureinanurbanenvironment
AT wengqihao scalingeffectoffusedastermodislandsurfacetemperatureinanurbanenvironment