Cargando…
Machine Learning Aided Scheme for Load Balancing in Dense IoT Networks
With the dramatic increase of connected devices, the Internet of things (IoT) paradigm has become an important solution in supporting dense scenarios such as smart cities. The concept of heterogeneous networks (HetNets) has emerged as a viable solution to improving the capacity of cellular networks...
Autores principales: | Gomez, Cesar A., Shami, Abdallah, Wang, Xianbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263749/ https://www.ncbi.nlm.nih.gov/pubmed/30400631 http://dx.doi.org/10.3390/s18113779 |
Ejemplares similares
-
A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms
por: Diro, Abebe, et al.
Publicado: (2021) -
A Novel Load Balancing Scheme for Satellite IoT Networks Based on Spatial–Temporal Distribution of Users and Advanced Genetic Algorithms
por: Lin, Wenliang, et al.
Publicado: (2022) -
Machine learning and deep learning approaches in IoT
por: Javed, Abqa, et al.
Publicado: (2023) -
Sensor Topology Optimization in Dense IoT Environments by Applying Neural Network Configuration
por: Papastergiou, George, et al.
Publicado: (2023) -
An improved energy-efficient cloud-optimized load-balancing for IoT frameworks
por: Moparthi, Nageswara Rao, et al.
Publicado: (2023)