Cargando…
An Adaptive Parallel Processing Strategy for Complex Event Processing Systems over Data Streams in Wireless Sensor Networks
Efficient matching of incoming events of data streams to persistent queries is fundamental to event stream processing systems in wireless sensor networks. These applications require dealing with high volume and continuous data streams with fast processing time on distributed complex event processing...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263753/ https://www.ncbi.nlm.nih.gov/pubmed/30400158 http://dx.doi.org/10.3390/s18113732 |
Sumario: | Efficient matching of incoming events of data streams to persistent queries is fundamental to event stream processing systems in wireless sensor networks. These applications require dealing with high volume and continuous data streams with fast processing time on distributed complex event processing (CEP) systems. Therefore, a well-managed parallel processing technique is needed for improving the performance of the system. However, the specific properties of pattern operators in the CEP systems increase the difficulties of the parallel processing problem. To address these issues, a parallelization model and an adaptive parallel processing strategy are proposed for the complex event processing by introducing a histogram and utilizing the probability and queue theory. The proposed strategy can estimate the optimal event splitting policy, which can suit the most recent workload conditions such that the selected policy has the least expected waiting time for further processing of the arriving events. The proposed strategy can keep the CEP system running fast under the variation of the time window sizes of operators and the input rates of streams. Finally, the utility of our work is demonstrated through the experiments on the StreamBase system. |
---|