Cargando…
Reinforcement Learning-Based Multi-AUV Adaptive Trajectory Planning for Under-Ice Field Estimation
This work studies online learning-based trajectory planning for multiple autonomous underwater vehicles (AUVs) to estimate a water parameter field of interest in the under-ice environment. A centralized system is considered, where several fixed access points on the ice layer are introduced as gatewa...
Autores principales: | Wang, Chaofeng, Wei, Li, Wang, Zhaohui, Song, Min, Mahmoudian, Nina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263807/ https://www.ncbi.nlm.nih.gov/pubmed/30424017 http://dx.doi.org/10.3390/s18113859 |
Ejemplares similares
-
Antidisturbance Control for AUV Trajectory Tracking Based on Fuzzy Adaptive Extended State Observer
por: Kang, Song, et al.
Publicado: (2020) -
Improved Artificial Potential Field Algorithm Assisted by Multisource Data for AUV Path Planning
por: Xing, Tianyu, et al.
Publicado: (2023) -
Bilevel Optimization-Based Time-Optimal Path Planning for AUVs
por: Yao, Xuliang, et al.
Publicado: (2018) -
A Multi-AUV Maritime Target Search Method for Moving and Invisible Objects Based on Multi-Agent Deep Reinforcement Learning
por: Wang, Guangcheng, et al.
Publicado: (2022) -
Multibody System-Based Adaptive Formation Scheme for Multiple Under-Actuated AUVs
por: Huang, Hai, et al.
Publicado: (2020)