Cargando…
Enhancement of Localization Systems in NLOS Urban Scenario with Multipath Ray Tracing Fingerprints and Machine Learning †
A hybrid technique is proposed to enhance the localization performance of a time difference of arrival (TDOA) deployed in non-line-of-sight (NLOS) suburban scenario. The idea was to use Machine Learning framework on the dataset, produced by the ray tracing simulation, and the Channel Impulse Respons...
Autores principales: | N. de Sousa, Marcelo, S. Thomä, Reiner |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263810/ https://www.ncbi.nlm.nih.gov/pubmed/30469418 http://dx.doi.org/10.3390/s18114073 |
Ejemplares similares
-
NLOS Multipath Classification of GNSS Signal Correlation Output Using Machine Learning
por: Suzuki, Taro, et al.
Publicado: (2021) -
Multipath/NLOS Detection Based on K-Means Clustering for GNSS/INS Tightly Coupled System in Urban Areas
por: Wang, Hao, et al.
Publicado: (2022) -
A Robust Wireless Sensor Network Localization Algorithm in Mixed LOS/NLOS Scenario
por: Li, Bing, et al.
Publicado: (2015) -
GNSS NLOS Signal Classification Based on Machine Learning and Pseudorange Residual Check
por: Ozeki, Tomohiro, et al.
Publicado: (2022) -
Multipath TCP-Based IoT Communication Evaluation: From the Perspective of Multipath Management with Machine Learning
por: Ji, Ruiwen, et al.
Publicado: (2020)