Cargando…
Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks ‡
In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However, the long preamble problem with acoust...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263863/ https://www.ncbi.nlm.nih.gov/pubmed/30424548 http://dx.doi.org/10.3390/s18113895 |
_version_ | 1783375365708709888 |
---|---|
author | Dong, Yuan Pu, Lina Luo, Yu Peng, Zheng Mo, Haining Meng, Yun Zhao, Yi Zhang, Yuzhi |
author_facet | Dong, Yuan Pu, Lina Luo, Yu Peng, Zheng Mo, Haining Meng, Yun Zhao, Yi Zhang, Yuzhi |
author_sort | Dong, Yuan |
collection | PubMed |
description | In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However, the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-based receiver-initiated MAC (TERI-MAC) to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications. |
format | Online Article Text |
id | pubmed-6263863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62638632018-12-12 Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks ‡ Dong, Yuan Pu, Lina Luo, Yu Peng, Zheng Mo, Haining Meng, Yun Zhao, Yi Zhang, Yuzhi Sensors (Basel) Article In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However, the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-based receiver-initiated MAC (TERI-MAC) to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications. MDPI 2018-11-12 /pmc/articles/PMC6263863/ /pubmed/30424548 http://dx.doi.org/10.3390/s18113895 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dong, Yuan Pu, Lina Luo, Yu Peng, Zheng Mo, Haining Meng, Yun Zhao, Yi Zhang, Yuzhi Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks ‡ |
title | Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks ‡ |
title_full | Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks ‡ |
title_fullStr | Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks ‡ |
title_full_unstemmed | Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks ‡ |
title_short | Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks ‡ |
title_sort | receiver-initiated handshaking mac based on traffic estimation for underwater sensor networks ‡ |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263863/ https://www.ncbi.nlm.nih.gov/pubmed/30424548 http://dx.doi.org/10.3390/s18113895 |
work_keys_str_mv | AT dongyuan receiverinitiatedhandshakingmacbasedontrafficestimationforunderwatersensornetworks AT pulina receiverinitiatedhandshakingmacbasedontrafficestimationforunderwatersensornetworks AT luoyu receiverinitiatedhandshakingmacbasedontrafficestimationforunderwatersensornetworks AT pengzheng receiverinitiatedhandshakingmacbasedontrafficestimationforunderwatersensornetworks AT mohaining receiverinitiatedhandshakingmacbasedontrafficestimationforunderwatersensornetworks AT mengyun receiverinitiatedhandshakingmacbasedontrafficestimationforunderwatersensornetworks AT zhaoyi receiverinitiatedhandshakingmacbasedontrafficestimationforunderwatersensornetworks AT zhangyuzhi receiverinitiatedhandshakingmacbasedontrafficestimationforunderwatersensornetworks |