Cargando…
Application of Computational Intelligence Methods for the Automated Identification of Paper-Ink Samples Based on LIBS
Laser-induced breakdown spectroscopy (LIBS) is an important analysis technique with applications in many industrial branches and fields of scientific research. Nowadays, the advantages of LIBS are impaired by the main drawback in the interpretation of obtained spectra and identification of observed...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263904/ https://www.ncbi.nlm.nih.gov/pubmed/30380626 http://dx.doi.org/10.3390/s18113670 |
_version_ | 1783375375381823488 |
---|---|
author | Rzecki, Krzysztof Sośnicki, Tomasz Baran, Mateusz Niedźwiecki, Michał Król, Małgorzata Łojewski, Tomasz Acharya, U Rajendra Yildirim, Özal Pławiak, Paweł |
author_facet | Rzecki, Krzysztof Sośnicki, Tomasz Baran, Mateusz Niedźwiecki, Michał Król, Małgorzata Łojewski, Tomasz Acharya, U Rajendra Yildirim, Özal Pławiak, Paweł |
author_sort | Rzecki, Krzysztof |
collection | PubMed |
description | Laser-induced breakdown spectroscopy (LIBS) is an important analysis technique with applications in many industrial branches and fields of scientific research. Nowadays, the advantages of LIBS are impaired by the main drawback in the interpretation of obtained spectra and identification of observed spectral lines. This procedure is highly time-consuming since it is essentially based on the comparison of lines present in the spectrum with the literature database. This paper proposes the use of various computational intelligence methods to develop a reliable and fast classification of quasi-destructively acquired LIBS spectra into a set of predefined classes. We focus on a specific problem of classification of paper-ink samples into 30 separate, predefined classes. For each of 30 classes (10 pens of each of 5 ink types combined with 10 sheets of 5 paper types plus empty pages), 100 LIBS spectra are collected. Four variants of preprocessing, seven classifiers (decision trees, random forest, k-nearest neighbor, support vector machine, probabilistic neural network, multi-layer perceptron, and generalized regression neural network), 5-fold stratified cross-validation, and a test on an independent set (for methods evaluation) scenarios are employed. Our developed system yielded an accuracy of 99.08%, obtained using the random forest classifier. Our results clearly demonstrates that machine learning methods can be used to identify the paper-ink samples based on LIBS reliably at a faster rate. |
format | Online Article Text |
id | pubmed-6263904 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62639042018-12-12 Application of Computational Intelligence Methods for the Automated Identification of Paper-Ink Samples Based on LIBS Rzecki, Krzysztof Sośnicki, Tomasz Baran, Mateusz Niedźwiecki, Michał Król, Małgorzata Łojewski, Tomasz Acharya, U Rajendra Yildirim, Özal Pławiak, Paweł Sensors (Basel) Article Laser-induced breakdown spectroscopy (LIBS) is an important analysis technique with applications in many industrial branches and fields of scientific research. Nowadays, the advantages of LIBS are impaired by the main drawback in the interpretation of obtained spectra and identification of observed spectral lines. This procedure is highly time-consuming since it is essentially based on the comparison of lines present in the spectrum with the literature database. This paper proposes the use of various computational intelligence methods to develop a reliable and fast classification of quasi-destructively acquired LIBS spectra into a set of predefined classes. We focus on a specific problem of classification of paper-ink samples into 30 separate, predefined classes. For each of 30 classes (10 pens of each of 5 ink types combined with 10 sheets of 5 paper types plus empty pages), 100 LIBS spectra are collected. Four variants of preprocessing, seven classifiers (decision trees, random forest, k-nearest neighbor, support vector machine, probabilistic neural network, multi-layer perceptron, and generalized regression neural network), 5-fold stratified cross-validation, and a test on an independent set (for methods evaluation) scenarios are employed. Our developed system yielded an accuracy of 99.08%, obtained using the random forest classifier. Our results clearly demonstrates that machine learning methods can be used to identify the paper-ink samples based on LIBS reliably at a faster rate. MDPI 2018-10-29 /pmc/articles/PMC6263904/ /pubmed/30380626 http://dx.doi.org/10.3390/s18113670 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rzecki, Krzysztof Sośnicki, Tomasz Baran, Mateusz Niedźwiecki, Michał Król, Małgorzata Łojewski, Tomasz Acharya, U Rajendra Yildirim, Özal Pławiak, Paweł Application of Computational Intelligence Methods for the Automated Identification of Paper-Ink Samples Based on LIBS |
title | Application of Computational Intelligence Methods for the Automated Identification of Paper-Ink Samples Based on LIBS |
title_full | Application of Computational Intelligence Methods for the Automated Identification of Paper-Ink Samples Based on LIBS |
title_fullStr | Application of Computational Intelligence Methods for the Automated Identification of Paper-Ink Samples Based on LIBS |
title_full_unstemmed | Application of Computational Intelligence Methods for the Automated Identification of Paper-Ink Samples Based on LIBS |
title_short | Application of Computational Intelligence Methods for the Automated Identification of Paper-Ink Samples Based on LIBS |
title_sort | application of computational intelligence methods for the automated identification of paper-ink samples based on libs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263904/ https://www.ncbi.nlm.nih.gov/pubmed/30380626 http://dx.doi.org/10.3390/s18113670 |
work_keys_str_mv | AT rzeckikrzysztof applicationofcomputationalintelligencemethodsfortheautomatedidentificationofpaperinksamplesbasedonlibs AT sosnickitomasz applicationofcomputationalintelligencemethodsfortheautomatedidentificationofpaperinksamplesbasedonlibs AT baranmateusz applicationofcomputationalintelligencemethodsfortheautomatedidentificationofpaperinksamplesbasedonlibs AT niedzwieckimichał applicationofcomputationalintelligencemethodsfortheautomatedidentificationofpaperinksamplesbasedonlibs AT krolmałgorzata applicationofcomputationalintelligencemethodsfortheautomatedidentificationofpaperinksamplesbasedonlibs AT łojewskitomasz applicationofcomputationalintelligencemethodsfortheautomatedidentificationofpaperinksamplesbasedonlibs AT acharyaurajendra applicationofcomputationalintelligencemethodsfortheautomatedidentificationofpaperinksamplesbasedonlibs AT yildirimozal applicationofcomputationalintelligencemethodsfortheautomatedidentificationofpaperinksamplesbasedonlibs AT pławiakpaweł applicationofcomputationalintelligencemethodsfortheautomatedidentificationofpaperinksamplesbasedonlibs |