Cargando…
Hierarchical Sub-Pixel Anomaly Detection Framework for Hyperspectral Imagery
Anomaly detection is an important task in hyperspectral processing. Some previous works, based on statistical information, focus on Reed-Xiaoli (RX), as it is one of the most classical and commonly used methods. However, its performance tends to be affected when anomaly target size is smaller than s...
Autores principales: | Wang, Wenzheng, Zhao, Baojun, Feng, Fan, Nan, Jinghong, Li, Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263908/ https://www.ncbi.nlm.nih.gov/pubmed/30373323 http://dx.doi.org/10.3390/s18113662 |
Ejemplares similares
-
Weighted Sparseness-Based Anomaly Detection for Hyperspectral Imagery
por: Lian, Xing, et al.
Publicado: (2023) -
Progressive Line Processing of Kernel RX Anomaly Detection Algorithm for Hyperspectral Imagery
por: Zhao, Chunhui, et al.
Publicado: (2017) -
A High-Order Statistical Tensor Based Algorithm for Anomaly Detection in Hyperspectral Imagery
por: Geng, Xiurui, et al.
Publicado: (2014) -
Hierarchical Sparse Learning with Spectral-Spatial Information for Hyperspectral Imagery Denoising
por: Liu, Shuai, et al.
Publicado: (2016) -
Structured Background Modeling for Hyperspectral Anomaly Detection
por: Li, Fei, et al.
Publicado: (2018)