Cargando…
THz Spectroscopic Investigation of Wheat-Quality by Using Multi-Source Data Fusion
In order to improve the detection accuracy for the quality of wheat, a recognition method for wheat quality using the terahertz (THz) spectrum and multi-source information fusion technology is proposed. Through a combination of the absorption and the refractive index spectra of samples of normal, ge...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263950/ https://www.ncbi.nlm.nih.gov/pubmed/30441868 http://dx.doi.org/10.3390/s18113945 |
Sumario: | In order to improve the detection accuracy for the quality of wheat, a recognition method for wheat quality using the terahertz (THz) spectrum and multi-source information fusion technology is proposed. Through a combination of the absorption and the refractive index spectra of samples of normal, germinated, moldy, and worm-eaten wheat, support vector machine (SVM) and Dempster-Shafer (DS) evidence theory with different kernel functions were used to establish a classification fusion model for the multiple optical indexes of wheat. The results showed that the recognition rate of the fusion model for wheat samples can be as high as 96%. Furthermore, this approach was compared to the regression model based on single-spectrum analysis. The results indicate that the average recognition rates of fusion models for wheat can reach 90%, and the recognition rate of the SVM radial basis function (SVM-RBF) fusion model can reach 97.5%. The preliminary results indicated that THz-TDS combined with DS evidence theory analysis was suitable for the determination of the wheat quality with better detection accuracy. |
---|