Cargando…
A Novel PARAFAC Model for Processing the Nested Vector-Sensor Array
In this paper, a novel parallel factor (PARAFAC) model for processing the nested vector-sensor array is proposed. It is first shown that a nested vector-sensor array can be divided into multiple nested scalar-sensor subarrays. By means of the autocorrelation matrices of the measurements of these sub...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264093/ https://www.ncbi.nlm.nih.gov/pubmed/30384492 http://dx.doi.org/10.3390/s18113708 |
Sumario: | In this paper, a novel parallel factor (PARAFAC) model for processing the nested vector-sensor array is proposed. It is first shown that a nested vector-sensor array can be divided into multiple nested scalar-sensor subarrays. By means of the autocorrelation matrices of the measurements of these subarrays and the cross-correlation matrices among them, it is then demonstrated that these subarrays can be transformed into virtual scalar-sensor uniform linear arrays (ULAs). When the measurement matrices of these scalar-sensor ULAs are combined to form a third-order tensor, a novel PARAFAC model is obtained, which corresponds to a longer vector-sensor ULA and includes all of the measurements of the difference co-array constructed from the original nested vector-sensor array. Analyses show that the proposed PARAFAC model can fully use all of the measurements of the difference co-array, instead of its partial measurements as the reported models do in literature. It implies that all of the measurements of the difference co-array can be fully exploited to do the 2-D direction of arrival (DOA) and polarization parameter estimation effectively by a PARAFAC decomposition method so that both the better estimation performance and slightly improved identifiability are achieved. Simulation results confirm the efficiency of the proposed model. |
---|