Cargando…
Protection of Superconducting Industrial Machinery Using RNN-Based Anomaly Detection for Implementation in Smart Sensor †
Sensing the voltage developed over a superconducting object is very important in order to make superconducting installation safe. An increase in the resistive part of this voltage (quench) can lead to significant deterioration or even to the destruction of the superconducting device. Therefore, dete...
Autores principales: | Wielgosz, Maciej, Skoczeń, Andrzej, De Matteis, Ernesto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264111/ https://www.ncbi.nlm.nih.gov/pubmed/30441813 http://dx.doi.org/10.3390/s18113933 |
Ejemplares similares
-
Protection of Superconducting Industrial Machinery Using RNN-Based Anomaly Detection for Implementation in Smart Sensor
por: Wielgosz, Maciej, et al.
Publicado: (2018) -
Recurrent Neural Networks for anomaly detection in the Post-Mortem time series of LHC superconducting magnets
por: Wielgosz, Maciej, et al.
Publicado: (2017) -
The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization
por: Wielgosz, Maciej, et al.
Publicado: (2017) -
Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets
por: Wielgosz, Maciej, et al.
Publicado: (2016) -
Anomaly Detection in a Smart Industrial Machinery Plant Using IoT and Machine Learning
por: Jaramillo-Alcazar, Angel, et al.
Publicado: (2023)