Cargando…
Hyperspectral Image Classification Based on Improved Rotation Forest Algorithm
Hyperspectral image classification is a hot issue in the field of remote sensing. It is possible to achieve high accuracy and strong generalization through a good classification method that is used to process image data. In this paper, an efficient hyperspectral image classification method based on...
Autores principales: | Lv, Fei, Han, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264121/ https://www.ncbi.nlm.nih.gov/pubmed/30360556 http://dx.doi.org/10.3390/s18113601 |
Ejemplares similares
-
Rotational hyperspectral scanner and related image reconstruction algorithm
por: Luo, Longqiang, et al.
Publicado: (2021) -
Comparison of CNN Algorithms on Hyperspectral Image Classification in Agricultural Lands
por: Hsieh, Tien-Heng, et al.
Publicado: (2020) -
Uncertainty Assessment of Hyperspectral Image Classification: Deep Learning vs. Random Forest
por: Shadman Roodposhti, Majid, et al.
Publicado: (2019) -
Multi-scale guided feature extraction and classification algorithm for hyperspectral images
por: Huang, Shiqi, et al.
Publicado: (2021) -
Pairwise Elastic Net Representation-Based Classification for Hyperspectral Image Classification
por: Li, Hao, et al.
Publicado: (2021)