Cargando…

The Triterpenes 3β-Lup-20(29)-en-3-ol and 3β-Lup-20(29)-en-3-yl Acetate and the Carbohydrate 1,2,3,4,5,6-Hexa-O-acetyl-dulcitol as Photosynthesis Light Reactions Inhibitors

Three compounds were isolated from Maytenus acanthophylla Reissek (Celastraceae): the pentacyclic triterpenes lup-20(29)-en-3β-ol (lupeol, 1) and 3β-lup-20(29)-en-3-yl acetate (2) and the carbohydrate 1,2,3,4,5,6-hexa-O-acetyldulcitol (3);lupeol was also isolated from Xylosma flexuosa. The compounds...

Descripción completa

Detalles Bibliográficos
Autores principales: Menezes-de-Oliveira, Djalma, Aguilar, Maria-Isabel, King-Díaz, Beatriz, Vieira-Filho, Sidney Augusto, Pains-Duarte, Lucinier, de Fátima Silva, Grácia-Divin, Lotina-Hennsen, Blas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264316/
https://www.ncbi.nlm.nih.gov/pubmed/22134400
http://dx.doi.org/10.3390/molecules16129939
Descripción
Sumario:Three compounds were isolated from Maytenus acanthophylla Reissek (Celastraceae): the pentacyclic triterpenes lup-20(29)-en-3β-ol (lupeol, 1) and 3β-lup-20(29)-en-3-yl acetate (2) and the carbohydrate 1,2,3,4,5,6-hexa-O-acetyldulcitol (3);lupeol was also isolated from Xylosma flexuosa. The compounds’ structures were elucidated by spectroscopic and spectrometric analysis. Compound 1 acts as an energy transfer inhibitor, interacting with isolated CF(1) bound to thylakoid membrane, and dulcitol hexaacetate 3 behaves as a Hill reaction inhibitor and as an uncoupler, as determined by polarography. Chlorophyll a (Chl a) fluorescence induction kinetics from the minimum yield F(0) to the maximum yield F(M ) provides information of the filling up from electrons coming from water to plastoquinone pool with reducing equivalents. In this paper we have examined the effects of compounds 1 and 3 on spinach leaf discs. Compound 1 induces the appearance of a K-band, which indicates that it inhibits the water splitting enzyme. In vivo assays measuring the fluorescence of chl a in P. ixocarpa leaves sprayed with compound 1, showed the appearance of the K-band and the PSII reaction centers was transformed to “heat sinks” or silent reaction centers unable to reduce Q(A). However, 3 also induced the appearance of a K band and a new band I appears in P. ixocarpa plants, therefore it inhibits at the water splitting enzyme complex and at the PQH(2) site on b(6)f complex. Compounds 1 and 3 did not affect chlorophyll a fluorescence of L. perenne plants.