Cargando…

Sex Chromosome Effects on Male–Female Differences in Mammals

Fundamental differences exist between males and females, encompassing anatomy, physiology, behaviour, and genetics. Such differences undoubtedly play a part in the well documented, yet poorly understood, disparity in disease susceptibility between the sexes. Although traditionally attributed to gona...

Descripción completa

Detalles Bibliográficos
Autores principales: Snell, Daniel M., Turner, James M.A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264392/
https://www.ncbi.nlm.nih.gov/pubmed/30458153
http://dx.doi.org/10.1016/j.cub.2018.09.018
_version_ 1783375485953114112
author Snell, Daniel M.
Turner, James M.A.
author_facet Snell, Daniel M.
Turner, James M.A.
author_sort Snell, Daniel M.
collection PubMed
description Fundamental differences exist between males and females, encompassing anatomy, physiology, behaviour, and genetics. Such differences undoubtedly play a part in the well documented, yet poorly understood, disparity in disease susceptibility between the sexes. Although traditionally attributed to gonadal sex hormone effects, recent work has begun to shed more light on the contribution of genetics — and in particular the sex chromosomes — to these sexual dimorphisms. Here, we explore the accumulating evidence for a significant genetic component to mammalian sexual dimorphism through the paradigm of sex chromosome evolution. The differences between the extant X and Y chromosomes, at both a sequence and regulatory level, arose across 166 million years. A functional result of these differences is cell autonomous sexual dimorphism. By understanding the process that changed a pair of homologous ancestral autosomes into the extant mammalian X and Y, we believe it easier to consider the mechanisms that may contribute to hormone-independent male–female differences. We highlight key roles for genes with homologues present on both sex chromosomes, where the X-linked copy escapes X chromosome inactivation. Finally, we summarise current experimental paradigms and suggest areas for developments to further increase our understanding of cell autonomous sexual dimorphism in the context of health and disease.
format Online
Article
Text
id pubmed-6264392
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-62643922018-12-07 Sex Chromosome Effects on Male–Female Differences in Mammals Snell, Daniel M. Turner, James M.A. Curr Biol Article Fundamental differences exist between males and females, encompassing anatomy, physiology, behaviour, and genetics. Such differences undoubtedly play a part in the well documented, yet poorly understood, disparity in disease susceptibility between the sexes. Although traditionally attributed to gonadal sex hormone effects, recent work has begun to shed more light on the contribution of genetics — and in particular the sex chromosomes — to these sexual dimorphisms. Here, we explore the accumulating evidence for a significant genetic component to mammalian sexual dimorphism through the paradigm of sex chromosome evolution. The differences between the extant X and Y chromosomes, at both a sequence and regulatory level, arose across 166 million years. A functional result of these differences is cell autonomous sexual dimorphism. By understanding the process that changed a pair of homologous ancestral autosomes into the extant mammalian X and Y, we believe it easier to consider the mechanisms that may contribute to hormone-independent male–female differences. We highlight key roles for genes with homologues present on both sex chromosomes, where the X-linked copy escapes X chromosome inactivation. Finally, we summarise current experimental paradigms and suggest areas for developments to further increase our understanding of cell autonomous sexual dimorphism in the context of health and disease. Cell Press 2018-11-19 /pmc/articles/PMC6264392/ /pubmed/30458153 http://dx.doi.org/10.1016/j.cub.2018.09.018 Text en © 2018 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Snell, Daniel M.
Turner, James M.A.
Sex Chromosome Effects on Male–Female Differences in Mammals
title Sex Chromosome Effects on Male–Female Differences in Mammals
title_full Sex Chromosome Effects on Male–Female Differences in Mammals
title_fullStr Sex Chromosome Effects on Male–Female Differences in Mammals
title_full_unstemmed Sex Chromosome Effects on Male–Female Differences in Mammals
title_short Sex Chromosome Effects on Male–Female Differences in Mammals
title_sort sex chromosome effects on male–female differences in mammals
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264392/
https://www.ncbi.nlm.nih.gov/pubmed/30458153
http://dx.doi.org/10.1016/j.cub.2018.09.018
work_keys_str_mv AT snelldanielm sexchromosomeeffectsonmalefemaledifferencesinmammals
AT turnerjamesma sexchromosomeeffectsonmalefemaledifferencesinmammals