Cargando…

The in Vitro Structure-Related Anti-Cancer Activity of Ginsenosides and Their Derivatives

Panax ginseng has long been used in Asia as a herbal medicine for the prevention and treatment of various diseases, including cancer. The current study evaluated the cytotoxic potency against a variety of cancer cells by using ginseng ethanol extracts (RSE), protopanaxadiol (PPD)-type, protopanaxatr...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Hang, Bai, Li-Ping, Wong, Vincent Kam Wai, Zhou, Hua, Wang, Jing-Rong, Liu, Yan, Jiang, Zhi-Hong, Liu, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264453/
https://www.ncbi.nlm.nih.gov/pubmed/22183886
http://dx.doi.org/10.3390/molecules161210619
Descripción
Sumario:Panax ginseng has long been used in Asia as a herbal medicine for the prevention and treatment of various diseases, including cancer. The current study evaluated the cytotoxic potency against a variety of cancer cells by using ginseng ethanol extracts (RSE), protopanaxadiol (PPD)-type, protopanaxatriol (PPT)-type ginsenosides fractions, and their hydrolysates, which were prepared by stepwise hydrolysis of the sugar moieties of the ginsenosides. The results showed that the cytotoxic potency of the hydrolysates of RSE and total PPD-type or PPT-type ginsenoside fractions was much stronger than the original RSE and ginsenosides; especially the hydrolysate of PPD-type ginsenoside fractions. Subsequently, two derivatives of protopanaxadiol (1), compounds 2 and 3, were synthesized via hydrogenation and dehydration reactions of compound 1. Using those two derivatives and the original ginsenosides, a comparative study on various cancer cell lines was conducted; the results demonstrated that the cytotoxic potency was generally in the descending order of compound 3 > 20(S)-dihydroprotopanaxadiol (2) > PPD (1) > 20(S)-Rh2 > 20(R)-Rh2 ≈ 20(R)-Rg3 ≈ 20(S)-Rg3. The results clearly indicate the structure-related activities in which the compound with less polar chemical structures possesses higher cytotoxic activity towards cancer cells.