Cargando…
A unified framework for link prediction based on non-negative matrix factorization with coupling multivariate information
Many link prediction methods have been developed to infer unobserved links or predict missing links based on the observed network structure that is always incomplete and subject to interfering noise. Thus, the performance of existing methods is usually limited in that their computation depends only...
Autores principales: | Wang, Wenjun, Tang, Minghu, Jiao, Pengfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264521/ https://www.ncbi.nlm.nih.gov/pubmed/30496261 http://dx.doi.org/10.1371/journal.pone.0208185 |
Ejemplares similares
-
A perturbation-based framework for link prediction via non-negative matrix factorization
por: Wang, Wenjun, et al.
Publicado: (2016) -
Link prediction based on non-negative matrix factorization
por: Chen, Bolun, et al.
Publicado: (2017) -
AURORA: A Unified fRamework fOR Anomaly detection on multivariate time series
por: Zhang, Lin, et al.
Publicado: (2021) -
A unifying probabilistic framework for analyzing residual dipolar couplings
por: Habeck, Michael, et al.
Publicado: (2007) -
Link predication based on matrix factorization by fusion of multi class organizations of the network
por: Jiao, Pengfei, et al.
Publicado: (2017)