Cargando…
Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction
Diffusion MRI data can be affected by hardware and subject-related artefacts that can adversely affect downstream analyses. Therefore, automated quality control (QC) is of great importance, especially in large population studies where visual QC is not practical. In this work, we introduce an automat...
Autores principales: | Bastiani, Matteo, Cottaar, Michiel, Fitzgibbon, Sean P., Suri, Sana, Alfaro-Almagro, Fidel, Sotiropoulos, Stamatios N., Jbabdi, Saad, Andersson, Jesper L.R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264528/ https://www.ncbi.nlm.nih.gov/pubmed/30267859 http://dx.doi.org/10.1016/j.neuroimage.2018.09.073 |
Ejemplares similares
-
Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes
por: Andersson, Jesper L.R., et al.
Publicado: (2015) -
Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement
por: Andersson, Jesper L.R., et al.
Publicado: (2017) -
An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
por: Andersson, Jesper L.R., et al.
Publicado: (2016) -
Modelling white matter in gyral blades as a continuous vector field
por: Cottaar, Michiel, et al.
Publicado: (2021) -
Improved tractography using asymmetric fibre orientation distributions
por: Bastiani, Matteo, et al.
Publicado: (2017)