Cargando…
Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional spiking neural network
Speech recognition (SR) has been improved significantly by artificial neural networks (ANNs), but ANNs have the drawbacks of biologically implausibility and excessive power consumption because of the nonlocal transfer of real-valued errors and weights. While spiking neural networks (SNNs) have the p...
Autores principales: | Dong, Meng, Huang, Xuhui, Xu, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264808/ https://www.ncbi.nlm.nih.gov/pubmed/30496179 http://dx.doi.org/10.1371/journal.pone.0204596 |
Ejemplares similares
-
Neural encoding with unsupervised spiking convolutional neural network
por: Wang, Chong, et al.
Publicado: (2023) -
Unsupervised learning of digit recognition using spike-timing-dependent plasticity
por: Diehl, Peter U., et al.
Publicado: (2015) -
Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity
por: Masquelier, Timothée, et al.
Publicado: (2007) -
Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks
por: Chakraborty, Biswadeep, et al.
Publicado: (2021) -
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
por: Liu, Fangxin, et al.
Publicado: (2021)