Cargando…

Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling

Wnt/β-catenin signaling is necessary for lymphatic vascular development. Oscillatory shear stress (OSS) enhances Wnt/β-catenin signaling in cultured lymphatic endothelial cells (LECs) to induce expression of the lymphedema-associated transcription factors GATA2 and FOXC2. However, the mechanisms by...

Descripción completa

Detalles Bibliográficos
Autores principales: Cha, Boksik, Geng, Xin, Mahamud, Md. Riaj, Zhang, Jenny Y., Chen, Lijuan, Kim, Wantae, Jho, Eek-hoon, Kim, Yeunhee, Choi, Dongwon, Dixon, J. Brandon, Chen, Hong, Hong, Young-Kwon, Olson, Lorin, Kim, Tae Hoon, Merrill, Bradley J., Davis, Michael J., Srinivasan, R. Sathish
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264919/
https://www.ncbi.nlm.nih.gov/pubmed/30332639
http://dx.doi.org/10.1016/j.celrep.2018.09.049
_version_ 1783375589466439680
author Cha, Boksik
Geng, Xin
Mahamud, Md. Riaj
Zhang, Jenny Y.
Chen, Lijuan
Kim, Wantae
Jho, Eek-hoon
Kim, Yeunhee
Choi, Dongwon
Dixon, J. Brandon
Chen, Hong
Hong, Young-Kwon
Olson, Lorin
Kim, Tae Hoon
Merrill, Bradley J.
Davis, Michael J.
Srinivasan, R. Sathish
author_facet Cha, Boksik
Geng, Xin
Mahamud, Md. Riaj
Zhang, Jenny Y.
Chen, Lijuan
Kim, Wantae
Jho, Eek-hoon
Kim, Yeunhee
Choi, Dongwon
Dixon, J. Brandon
Chen, Hong
Hong, Young-Kwon
Olson, Lorin
Kim, Tae Hoon
Merrill, Bradley J.
Davis, Michael J.
Srinivasan, R. Sathish
author_sort Cha, Boksik
collection PubMed
description Wnt/β-catenin signaling is necessary for lymphatic vascular development. Oscillatory shear stress (OSS) enhances Wnt/β-catenin signaling in cultured lymphatic endothelial cells (LECs) to induce expression of the lymphedema-associated transcription factors GATA2 and FOXC2. However, the mechanisms by which OSS regulates Wnt/β-catenin signaling and GATA2 and FOXC2 expression are unknown. We show that OSS activates autocrine Wnt/β-catenin signaling in LECs in vitro. Tissue-specific deletion of Wntless, which is required for the secretion of Wnt ligands, reveals that LECs and vascular smooth muscle cells are complementary sources of Wnt ligands that regulate lymphatic vascular development in vivo. Further, the LEC master transcription factor PROX1 forms a complex with β-catenin and the TCF/LEF transcription factor TCF7L1 to enhance Wnt/β-catenin signaling and promote FOXC2 and GATA2 expression in LECs. Thus, our work defines Wnt sources, reveals that PROX1 directs cell fate by acting as a Wnt signaling component, and dissects the mechanisms of PROX1 and Wnt synergy.
format Online
Article
Text
id pubmed-6264919
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-62649192018-11-29 Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling Cha, Boksik Geng, Xin Mahamud, Md. Riaj Zhang, Jenny Y. Chen, Lijuan Kim, Wantae Jho, Eek-hoon Kim, Yeunhee Choi, Dongwon Dixon, J. Brandon Chen, Hong Hong, Young-Kwon Olson, Lorin Kim, Tae Hoon Merrill, Bradley J. Davis, Michael J. Srinivasan, R. Sathish Cell Rep Article Wnt/β-catenin signaling is necessary for lymphatic vascular development. Oscillatory shear stress (OSS) enhances Wnt/β-catenin signaling in cultured lymphatic endothelial cells (LECs) to induce expression of the lymphedema-associated transcription factors GATA2 and FOXC2. However, the mechanisms by which OSS regulates Wnt/β-catenin signaling and GATA2 and FOXC2 expression are unknown. We show that OSS activates autocrine Wnt/β-catenin signaling in LECs in vitro. Tissue-specific deletion of Wntless, which is required for the secretion of Wnt ligands, reveals that LECs and vascular smooth muscle cells are complementary sources of Wnt ligands that regulate lymphatic vascular development in vivo. Further, the LEC master transcription factor PROX1 forms a complex with β-catenin and the TCF/LEF transcription factor TCF7L1 to enhance Wnt/β-catenin signaling and promote FOXC2 and GATA2 expression in LECs. Thus, our work defines Wnt sources, reveals that PROX1 directs cell fate by acting as a Wnt signaling component, and dissects the mechanisms of PROX1 and Wnt synergy. 2018-10-16 /pmc/articles/PMC6264919/ /pubmed/30332639 http://dx.doi.org/10.1016/j.celrep.2018.09.049 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
spellingShingle Article
Cha, Boksik
Geng, Xin
Mahamud, Md. Riaj
Zhang, Jenny Y.
Chen, Lijuan
Kim, Wantae
Jho, Eek-hoon
Kim, Yeunhee
Choi, Dongwon
Dixon, J. Brandon
Chen, Hong
Hong, Young-Kwon
Olson, Lorin
Kim, Tae Hoon
Merrill, Bradley J.
Davis, Michael J.
Srinivasan, R. Sathish
Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling
title Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling
title_full Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling
title_fullStr Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling
title_full_unstemmed Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling
title_short Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling
title_sort complementary wnt sources regulate lymphatic vascular development via prox1-dependent wnt/β-catenin signaling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264919/
https://www.ncbi.nlm.nih.gov/pubmed/30332639
http://dx.doi.org/10.1016/j.celrep.2018.09.049
work_keys_str_mv AT chaboksik complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT gengxin complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT mahamudmdriaj complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT zhangjennyy complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT chenlijuan complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT kimwantae complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT jhoeekhoon complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT kimyeunhee complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT choidongwon complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT dixonjbrandon complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT chenhong complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT hongyoungkwon complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT olsonlorin complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT kimtaehoon complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT merrillbradleyj complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT davismichaelj complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling
AT srinivasanrsathish complementarywntsourcesregulatelymphaticvasculardevelopmentviaprox1dependentwntbcateninsignaling