Cargando…

Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review

BACKGROUND: Wearable sensors are portable measurement tools that are becoming increasingly popular for the measurement of joint angle in the upper limb. With many brands emerging on the market, each with variations in hardware and protocols, evidence to inform selection and application is needed. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Walmsley, Corrin P., Williams, Sîan A., Grisbrook, Tiffany, Elliott, Catherine, Imms, Christine, Campbell, Amity
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265374/
https://www.ncbi.nlm.nih.gov/pubmed/30499058
http://dx.doi.org/10.1186/s40798-018-0167-7
_version_ 1783375629487439872
author Walmsley, Corrin P.
Williams, Sîan A.
Grisbrook, Tiffany
Elliott, Catherine
Imms, Christine
Campbell, Amity
author_facet Walmsley, Corrin P.
Williams, Sîan A.
Grisbrook, Tiffany
Elliott, Catherine
Imms, Christine
Campbell, Amity
author_sort Walmsley, Corrin P.
collection PubMed
description BACKGROUND: Wearable sensors are portable measurement tools that are becoming increasingly popular for the measurement of joint angle in the upper limb. With many brands emerging on the market, each with variations in hardware and protocols, evidence to inform selection and application is needed. Therefore, the objectives of this review were related to the use of wearable sensors to calculate upper limb joint angle. We aimed to describe (i) the characteristics of commercial and custom wearable sensors, (ii) the populations for whom researchers have adopted wearable sensors, and (iii) their established psychometric properties. METHODS: A systematic review of literature was undertaken using the following data bases: MEDLINE, EMBASE, CINAHL, Web of Science, SPORTDiscus, IEEE, and Scopus. Studies were eligible if they met the following criteria: (i) involved humans and/or robotic devices, (ii) involved the application or simulation of wearable sensors on the upper limb, and (iii) calculated a joint angle. RESULTS: Of 2191 records identified, 66 met the inclusion criteria. Eight studies compared wearable sensors to a robotic device and 22 studies compared to a motion analysis system. Commercial (n = 13) and custom (n = 7) wearable sensors were identified, each with variations in placement, calibration methods, and fusion algorithms, which were demonstrated to influence accuracy. CONCLUSION: Wearable sensors have potential as viable instruments for measurement of joint angle in the upper limb during active movement. Currently, customised application (i.e. calibration and angle calculation methods) is required to achieve sufficient accuracy (error <  5°). Additional research and standardisation is required to guide clinical application. TRIAL REGISTRATION: This systematic review was registered with PROSPERO (CRD42017059935).
format Online
Article
Text
id pubmed-6265374
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-62653742018-12-18 Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review Walmsley, Corrin P. Williams, Sîan A. Grisbrook, Tiffany Elliott, Catherine Imms, Christine Campbell, Amity Sports Med Open Systematic Review BACKGROUND: Wearable sensors are portable measurement tools that are becoming increasingly popular for the measurement of joint angle in the upper limb. With many brands emerging on the market, each with variations in hardware and protocols, evidence to inform selection and application is needed. Therefore, the objectives of this review were related to the use of wearable sensors to calculate upper limb joint angle. We aimed to describe (i) the characteristics of commercial and custom wearable sensors, (ii) the populations for whom researchers have adopted wearable sensors, and (iii) their established psychometric properties. METHODS: A systematic review of literature was undertaken using the following data bases: MEDLINE, EMBASE, CINAHL, Web of Science, SPORTDiscus, IEEE, and Scopus. Studies were eligible if they met the following criteria: (i) involved humans and/or robotic devices, (ii) involved the application or simulation of wearable sensors on the upper limb, and (iii) calculated a joint angle. RESULTS: Of 2191 records identified, 66 met the inclusion criteria. Eight studies compared wearable sensors to a robotic device and 22 studies compared to a motion analysis system. Commercial (n = 13) and custom (n = 7) wearable sensors were identified, each with variations in placement, calibration methods, and fusion algorithms, which were demonstrated to influence accuracy. CONCLUSION: Wearable sensors have potential as viable instruments for measurement of joint angle in the upper limb during active movement. Currently, customised application (i.e. calibration and angle calculation methods) is required to achieve sufficient accuracy (error <  5°). Additional research and standardisation is required to guide clinical application. TRIAL REGISTRATION: This systematic review was registered with PROSPERO (CRD42017059935). Springer International Publishing 2018-11-29 /pmc/articles/PMC6265374/ /pubmed/30499058 http://dx.doi.org/10.1186/s40798-018-0167-7 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Systematic Review
Walmsley, Corrin P.
Williams, Sîan A.
Grisbrook, Tiffany
Elliott, Catherine
Imms, Christine
Campbell, Amity
Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review
title Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review
title_full Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review
title_fullStr Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review
title_full_unstemmed Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review
title_short Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review
title_sort measurement of upper limb range of motion using wearable sensors: a systematic review
topic Systematic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265374/
https://www.ncbi.nlm.nih.gov/pubmed/30499058
http://dx.doi.org/10.1186/s40798-018-0167-7
work_keys_str_mv AT walmsleycorrinp measurementofupperlimbrangeofmotionusingwearablesensorsasystematicreview
AT williamssiana measurementofupperlimbrangeofmotionusingwearablesensorsasystematicreview
AT grisbrooktiffany measurementofupperlimbrangeofmotionusingwearablesensorsasystematicreview
AT elliottcatherine measurementofupperlimbrangeofmotionusingwearablesensorsasystematicreview
AT immschristine measurementofupperlimbrangeofmotionusingwearablesensorsasystematicreview
AT campbellamity measurementofupperlimbrangeofmotionusingwearablesensorsasystematicreview