Cargando…

Dataset on reflection and transmission coefficients of ultrasonic shear horizontal guided waves in plates with wall thinning

This data article reports the data for reflection and transmission coefficients of the SH0 and SH1 ultrasonic guided waves modes due to their interaction with tapered wall thinning in aluminium plates. Several thinning depths and edge taper angles were machined, at the total of 35 different samples....

Descripción completa

Detalles Bibliográficos
Autores principales: Kubrusly, Alan C., Freitas, Miguel A., von der Weid, Jean Pierre, Dixon, Steve
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265498/
https://www.ncbi.nlm.nih.gov/pubmed/30533468
http://dx.doi.org/10.1016/j.dib.2018.11.053
Descripción
Sumario:This data article reports the data for reflection and transmission coefficients of the SH0 and SH1 ultrasonic guided waves modes due to their interaction with tapered wall thinning in aluminium plates. Several thinning depths and edge taper angles were machined, at the total of 35 different samples. Periodic permanent magnet array electromagnet acoustic transducers were used to generate and receive the waves. Both modes were individually generated and separated in the received signal by means of effective post-processing technique. Reflection and transmission coefficients were calculated at both the leading and trailing edges of the thinning region for mode-converted and non-mode converted signals; therefore, eight coefficients were calculated for each generated mode, at the total of sixteen coefficients for each sample. Additional finite-element model was used in order to obtain numerical values for the coefficients. These data were used in order to analyze the interaction of the SH0 and SH1 modes with wall thinning and the capabilities of using them in non-destructive evaluation of corrosion-like defects in the research paper entitled “Interaction of SH guided waves with wall thinning” (Kubrusly et al., 2019).