Cargando…
Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta
Infection with helminth parasites evokes a complex cellular response in the host, where granulocytes (i.e. eosinophils, basophils and mast cells (MCs)) feature prominently. In addition to being used as markers of helminthic infections, MCs have been implicated in worm expulsion since animals defecti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265620/ https://www.ncbi.nlm.nih.gov/pubmed/30341242 http://dx.doi.org/10.1042/BSR20180687 |
_version_ | 1783375663335473152 |
---|---|
author | González, Marisol I. Lopes, Fernando McKay, Derek M. Reyes, José L. |
author_facet | González, Marisol I. Lopes, Fernando McKay, Derek M. Reyes, José L. |
author_sort | González, Marisol I. |
collection | PubMed |
description | Infection with helminth parasites evokes a complex cellular response in the host, where granulocytes (i.e. eosinophils, basophils and mast cells (MCs)) feature prominently. In addition to being used as markers of helminthic infections, MCs have been implicated in worm expulsion since animals defective in c-kit signaling, which results in diminished MC numbers, can have delayed worm expulsion. The role of MCs in the rejection of the rat tapeworm, Hymenolepsis diminuta, from the non-permissive mouse host is not known. MC-deficient mice display a delay in the expulsion of H. diminuta that is accompanied by a less intense splenic Th2 response, as determined by in vitro release of interleukin (IL)-4, IL-5 and IL-13 cytokines. Moreover, worms retrieved from MC-deficient mice were larger than those from wild-type (WT) mice. Assessment of gut-derived IL-25, IL-33, thymic stromal lymphopoietin revealed lower levels in uninfected MC-deficient mice compared with WT, suggesting a role for MCs in homeostatic control of these cytokines: differences in these gut cytokines between the mouse strains were not observed after infection with H. diminuta. Finally, mice infected with H. diminuta display less severe dinitrobenzene sulphonic acid (DNBS)-induced colitis, and this beneficial effect of the worm was unaltered in MC-deficient mice challenged with DNBS, as assessed by a macroscopic disease score. Thus, while MCs are not essential for rejection of H. diminuta from mice, their absence slows the kinetics of expulsion allowing the development of greater worm biomass prior to successful rejection of the parasitic burden. |
format | Online Article Text |
id | pubmed-6265620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-62656202018-12-13 Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta González, Marisol I. Lopes, Fernando McKay, Derek M. Reyes, José L. Biosci Rep Research Articles Infection with helminth parasites evokes a complex cellular response in the host, where granulocytes (i.e. eosinophils, basophils and mast cells (MCs)) feature prominently. In addition to being used as markers of helminthic infections, MCs have been implicated in worm expulsion since animals defective in c-kit signaling, which results in diminished MC numbers, can have delayed worm expulsion. The role of MCs in the rejection of the rat tapeworm, Hymenolepsis diminuta, from the non-permissive mouse host is not known. MC-deficient mice display a delay in the expulsion of H. diminuta that is accompanied by a less intense splenic Th2 response, as determined by in vitro release of interleukin (IL)-4, IL-5 and IL-13 cytokines. Moreover, worms retrieved from MC-deficient mice were larger than those from wild-type (WT) mice. Assessment of gut-derived IL-25, IL-33, thymic stromal lymphopoietin revealed lower levels in uninfected MC-deficient mice compared with WT, suggesting a role for MCs in homeostatic control of these cytokines: differences in these gut cytokines between the mouse strains were not observed after infection with H. diminuta. Finally, mice infected with H. diminuta display less severe dinitrobenzene sulphonic acid (DNBS)-induced colitis, and this beneficial effect of the worm was unaltered in MC-deficient mice challenged with DNBS, as assessed by a macroscopic disease score. Thus, while MCs are not essential for rejection of H. diminuta from mice, their absence slows the kinetics of expulsion allowing the development of greater worm biomass prior to successful rejection of the parasitic burden. Portland Press Ltd. 2018-11-30 /pmc/articles/PMC6265620/ /pubmed/30341242 http://dx.doi.org/10.1042/BSR20180687 Text en © 2018 The Author(s). http://creativecommons.org/licenses/by/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY) (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Articles González, Marisol I. Lopes, Fernando McKay, Derek M. Reyes, José L. Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta |
title | Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta
|
title_full | Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta
|
title_fullStr | Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta
|
title_full_unstemmed | Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta
|
title_short | Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta
|
title_sort | mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm hymenolepis diminuta |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265620/ https://www.ncbi.nlm.nih.gov/pubmed/30341242 http://dx.doi.org/10.1042/BSR20180687 |
work_keys_str_mv | AT gonzalezmarisoli mastcelldeficiencyinmiceresultsinbiomassovergrowthanddelayedexpulsionoftherattapewormhymenolepisdiminuta AT lopesfernando mastcelldeficiencyinmiceresultsinbiomassovergrowthanddelayedexpulsionoftherattapewormhymenolepisdiminuta AT mckayderekm mastcelldeficiencyinmiceresultsinbiomassovergrowthanddelayedexpulsionoftherattapewormhymenolepisdiminuta AT reyesjosel mastcelldeficiencyinmiceresultsinbiomassovergrowthanddelayedexpulsionoftherattapewormhymenolepisdiminuta |