Cargando…

Fast Analytic Simulation for Multi-Laser Heating of Sheet Metal in GPU

Interactive multi-beam laser machining simulation is crucial in the context of tool path planning and optimization of laser machining parameters. Current simulation approaches for heat transfer analysis (1) rely on numerical Finite Element methods (or any of its variants), non-suitable for interacti...

Descripción completa

Detalles Bibliográficos
Autores principales: Mejia-Parra, Daniel, Montoya-Zapata, Diego, Arbelaiz, Ander, Moreno, Aitor, Posada, Jorge, Ruiz-Salguero, Oscar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265929/
https://www.ncbi.nlm.nih.gov/pubmed/30355959
http://dx.doi.org/10.3390/ma11112078
_version_ 1783375726428291072
author Mejia-Parra, Daniel
Montoya-Zapata, Diego
Arbelaiz, Ander
Moreno, Aitor
Posada, Jorge
Ruiz-Salguero, Oscar
author_facet Mejia-Parra, Daniel
Montoya-Zapata, Diego
Arbelaiz, Ander
Moreno, Aitor
Posada, Jorge
Ruiz-Salguero, Oscar
author_sort Mejia-Parra, Daniel
collection PubMed
description Interactive multi-beam laser machining simulation is crucial in the context of tool path planning and optimization of laser machining parameters. Current simulation approaches for heat transfer analysis (1) rely on numerical Finite Element methods (or any of its variants), non-suitable for interactive applications; and (2) require the multiple laser beams to be completely synchronized in trajectories, parameters and time frames. To overcome this limitation, this manuscript presents an algorithm for interactive simulation of the transient temperature field on the sheet metal. Contrary to standard numerical methods, our algorithm is based on an analytic solution in the frequency domain, allowing arbitrary time/space discretizations without loss of precision and non-monotonic retrieval of the temperature history. In addition, the method allows complete asynchronous laser beams with independent trajectories, parameters and time frames. Our implementation in a GPU device allows simulations at interactive rates even for a large amount of simultaneous laser beams. The presented method is already integrated into an interactive simulation environment for sheet cutting. Ongoing work addresses thermal stress coupling and laser ablation.
format Online
Article
Text
id pubmed-6265929
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-62659292018-12-17 Fast Analytic Simulation for Multi-Laser Heating of Sheet Metal in GPU Mejia-Parra, Daniel Montoya-Zapata, Diego Arbelaiz, Ander Moreno, Aitor Posada, Jorge Ruiz-Salguero, Oscar Materials (Basel) Article Interactive multi-beam laser machining simulation is crucial in the context of tool path planning and optimization of laser machining parameters. Current simulation approaches for heat transfer analysis (1) rely on numerical Finite Element methods (or any of its variants), non-suitable for interactive applications; and (2) require the multiple laser beams to be completely synchronized in trajectories, parameters and time frames. To overcome this limitation, this manuscript presents an algorithm for interactive simulation of the transient temperature field on the sheet metal. Contrary to standard numerical methods, our algorithm is based on an analytic solution in the frequency domain, allowing arbitrary time/space discretizations without loss of precision and non-monotonic retrieval of the temperature history. In addition, the method allows complete asynchronous laser beams with independent trajectories, parameters and time frames. Our implementation in a GPU device allows simulations at interactive rates even for a large amount of simultaneous laser beams. The presented method is already integrated into an interactive simulation environment for sheet cutting. Ongoing work addresses thermal stress coupling and laser ablation. MDPI 2018-10-24 /pmc/articles/PMC6265929/ /pubmed/30355959 http://dx.doi.org/10.3390/ma11112078 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Mejia-Parra, Daniel
Montoya-Zapata, Diego
Arbelaiz, Ander
Moreno, Aitor
Posada, Jorge
Ruiz-Salguero, Oscar
Fast Analytic Simulation for Multi-Laser Heating of Sheet Metal in GPU
title Fast Analytic Simulation for Multi-Laser Heating of Sheet Metal in GPU
title_full Fast Analytic Simulation for Multi-Laser Heating of Sheet Metal in GPU
title_fullStr Fast Analytic Simulation for Multi-Laser Heating of Sheet Metal in GPU
title_full_unstemmed Fast Analytic Simulation for Multi-Laser Heating of Sheet Metal in GPU
title_short Fast Analytic Simulation for Multi-Laser Heating of Sheet Metal in GPU
title_sort fast analytic simulation for multi-laser heating of sheet metal in gpu
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265929/
https://www.ncbi.nlm.nih.gov/pubmed/30355959
http://dx.doi.org/10.3390/ma11112078
work_keys_str_mv AT mejiaparradaniel fastanalyticsimulationformultilaserheatingofsheetmetalingpu
AT montoyazapatadiego fastanalyticsimulationformultilaserheatingofsheetmetalingpu
AT arbelaizander fastanalyticsimulationformultilaserheatingofsheetmetalingpu
AT morenoaitor fastanalyticsimulationformultilaserheatingofsheetmetalingpu
AT posadajorge fastanalyticsimulationformultilaserheatingofsheetmetalingpu
AT ruizsalguerooscar fastanalyticsimulationformultilaserheatingofsheetmetalingpu