Cargando…
Emotional Stress State Detection Using Genetic Algorithm-Based Feature Selection on EEG Signals
In recent years, stress analysis by using electro-encephalography (EEG) signals incorporating machine learning techniques has emerged as an important area of research. EEG signals are one of the most important means of indirectly measuring the state of the brain. The existing stress algorithms lack...
Autores principales: | Shon, Dongkoo, Im, Kichang, Park, Jeong-Ho, Lim, Dong-Sun, Jang, Byungtae, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265975/ https://www.ncbi.nlm.nih.gov/pubmed/30400575 http://dx.doi.org/10.3390/ijerph15112461 |
Ejemplares similares
-
A Reliable Health Indicator for Fault Prognosis of Bearings
por: Duong, Bach Phi, et al.
Publicado: (2018) -
Classification Framework of the Bearing Faults of an Induction Motor Using Wavelet Scattering Transform-Based Features
por: Toma, Rafia Nishat, et al.
Publicado: (2022) -
Strict-Feedback Backstepping Digital Twin and Machine Learning Solution in AE Signals for Bearing Crack Identification
por: Piltan, Farzin, et al.
Publicado: (2022) -
A Bearing Fault Classification Framework Based on Image Encoding Techniques and a Convolutional Neural Network under Different Operating Conditions
por: Toma, Rafia Nishat, et al.
Publicado: (2022) -
A Hybrid Feature Pool-Based Emotional Stress State Detection Algorithm Using EEG Signals
por: Hasan, Md Junayed, et al.
Publicado: (2019)