Cargando…
Immunoliposomes with Simvastatin as a Potential Therapeutic in Treatment of Breast Cancer Cells Overexpressing HER2—An In Vitro Study
Lipophilic statins are promising candidates for breast cancer treatment. However, anticancer therapy requires much higher doses of statins than can be delivered orally, and such high doses are known to exert more adverse effects. The main objective of our study was to design a targeted, therapeutic...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266203/ https://www.ncbi.nlm.nih.gov/pubmed/30388834 http://dx.doi.org/10.3390/cancers10110418 |
Sumario: | Lipophilic statins are promising candidates for breast cancer treatment. However, anticancer therapy requires much higher doses of statins than can be delivered orally, and such high doses are known to exert more adverse effects. The main objective of our study was to design a targeted, therapeutic liposomal carrier of simvastatin characterised by high stability and specificity towards breast cancer cells. We chose SKBR3, the cell line that showed the highest sensitivity for simvastatin and liposomal simvastatin treatment. Additionally, SKBR3 has a notably high expression level of human epidermal growth factor receptor 2 (HER2), which we used as a target for our immunoliposomes. To do so we attached humanized anti-HER2 antibody to the envelope of liposomes. We tested the stability and selectivity of the proposed formulation along with the toxicity, ability to induce apoptosis and the effect on signalling pathways involving Akt and Erk kinases. The immunoliposomal formulation of simvastatin is characterized by long-term stability, high selectivity towards HER2-overexpressing breast cancer cells, low non-specific cytotoxicity and effective inhibition of the growth of target cells, presumably by inhibition of signalling pathways and induction of apoptosis. Hence, for the first time, we propose the use of immunoliposomes with simvastatin, targeted directly towards breast cancer cells overexpressing HER2. The prepared immunoliposomes may become a proof of concept in developing new anticancer therapy. |
---|