Cargando…

A Facile and Low-Cost Method to Produce Ultrapure 99.99999% Gallium

As one of the critical raw materials, very pure gallium is important for the semiconductor and photoelectric industry. Unfortunately, refining gallium to obtain a purity that exceeds 99.99999% is very difficult. In this paper, a new, facile and efficient continuous partial recrystallization method t...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Kefeng, Li, Ying, Zhang, Jiawei, Zhao, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266254/
https://www.ncbi.nlm.nih.gov/pubmed/30453611
http://dx.doi.org/10.3390/ma11112308
Descripción
Sumario:As one of the critical raw materials, very pure gallium is important for the semiconductor and photoelectric industry. Unfortunately, refining gallium to obtain a purity that exceeds 99.99999% is very difficult. In this paper, a new, facile and efficient continuous partial recrystallization method to prepare gallium of high purity is investigated. Impurity concentrations, segregation coefficients, and the purification effect were measured. The results indicated that the contaminating elements accumulated in the liquid phase along the crystal direction. The order of the removal ratio was Cu > Mg > Pb > Cr > Zn > Fe. This corresponded to the order of the experimentally obtained segregation coefficients for each impurity: Cu < Mg < Pb < Cr < Zn < Fe. The segregation coefficient of the impurities depended strongly on the crystallization rate. All observed impurity concentrations were substantially reduced, and the purity of the gallium obtained after our refinement exceeded 99.99999%.