Cargando…
Long-Term Influence of Laser-Processing Parameters on (Super)hydrophobicity Development and Stability of Stainless-Steel Surfaces
Controlling the surface wettability represents an important challenge in the field of surface functionalization. Here, the wettability of a stainless-steel surface is modified by 30-ns pulses of a Nd:YAG marking laser (λ = 1064 nm) with peak fluences within the range 3.3–25.1 J cm(−2). The short- (4...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266256/ https://www.ncbi.nlm.nih.gov/pubmed/30423878 http://dx.doi.org/10.3390/ma11112240 |
_version_ | 1783375797265891328 |
---|---|
author | Gregorčič, Peter Conradi, Marjetka Hribar, Luka Hočevar, Matej |
author_facet | Gregorčič, Peter Conradi, Marjetka Hribar, Luka Hočevar, Matej |
author_sort | Gregorčič, Peter |
collection | PubMed |
description | Controlling the surface wettability represents an important challenge in the field of surface functionalization. Here, the wettability of a stainless-steel surface is modified by 30-ns pulses of a Nd:YAG marking laser (λ = 1064 nm) with peak fluences within the range 3.3–25.1 J cm(−2). The short- (40 days), intermediate- (100 days) and long-term (1 year) superhydrophilic-to-(super)hydrophobic transition of the laser-textured surfaces exposed to the atmospheric air is examined by evaluating its wettability in the context of the following parameters: (i) pulse fluence; (ii) scan line separation; (iii) focal position and (iv) wetting period due to contact angle measurements. The results show that using solely a short-term evaluation can lead to wrong conclusions and that the faster development of the hydrophobicity immediately after laser texturing usually leads to lower final contact angle and vice versa, the slower this transition is, the more superhydrophobic the surface is expected to become (possibly even with self-cleaning ability). Depending on laser fluence, the laser-textured surfaces can develop stable or unstable hydrophobicity. Stable hydrophobicity is achieved, if the threshold fluence of 12 J cm(−2) is exceeded. We show that by nanosecond-laser texturing a lotus-leaf-like surface with a contact angle above 150° and roll-off angle below 5° can be achieved. |
format | Online Article Text |
id | pubmed-6266256 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62662562018-12-17 Long-Term Influence of Laser-Processing Parameters on (Super)hydrophobicity Development and Stability of Stainless-Steel Surfaces Gregorčič, Peter Conradi, Marjetka Hribar, Luka Hočevar, Matej Materials (Basel) Article Controlling the surface wettability represents an important challenge in the field of surface functionalization. Here, the wettability of a stainless-steel surface is modified by 30-ns pulses of a Nd:YAG marking laser (λ = 1064 nm) with peak fluences within the range 3.3–25.1 J cm(−2). The short- (40 days), intermediate- (100 days) and long-term (1 year) superhydrophilic-to-(super)hydrophobic transition of the laser-textured surfaces exposed to the atmospheric air is examined by evaluating its wettability in the context of the following parameters: (i) pulse fluence; (ii) scan line separation; (iii) focal position and (iv) wetting period due to contact angle measurements. The results show that using solely a short-term evaluation can lead to wrong conclusions and that the faster development of the hydrophobicity immediately after laser texturing usually leads to lower final contact angle and vice versa, the slower this transition is, the more superhydrophobic the surface is expected to become (possibly even with self-cleaning ability). Depending on laser fluence, the laser-textured surfaces can develop stable or unstable hydrophobicity. Stable hydrophobicity is achieved, if the threshold fluence of 12 J cm(−2) is exceeded. We show that by nanosecond-laser texturing a lotus-leaf-like surface with a contact angle above 150° and roll-off angle below 5° can be achieved. MDPI 2018-11-11 /pmc/articles/PMC6266256/ /pubmed/30423878 http://dx.doi.org/10.3390/ma11112240 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gregorčič, Peter Conradi, Marjetka Hribar, Luka Hočevar, Matej Long-Term Influence of Laser-Processing Parameters on (Super)hydrophobicity Development and Stability of Stainless-Steel Surfaces |
title | Long-Term Influence of Laser-Processing Parameters on (Super)hydrophobicity Development and Stability of Stainless-Steel Surfaces |
title_full | Long-Term Influence of Laser-Processing Parameters on (Super)hydrophobicity Development and Stability of Stainless-Steel Surfaces |
title_fullStr | Long-Term Influence of Laser-Processing Parameters on (Super)hydrophobicity Development and Stability of Stainless-Steel Surfaces |
title_full_unstemmed | Long-Term Influence of Laser-Processing Parameters on (Super)hydrophobicity Development and Stability of Stainless-Steel Surfaces |
title_short | Long-Term Influence of Laser-Processing Parameters on (Super)hydrophobicity Development and Stability of Stainless-Steel Surfaces |
title_sort | long-term influence of laser-processing parameters on (super)hydrophobicity development and stability of stainless-steel surfaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266256/ https://www.ncbi.nlm.nih.gov/pubmed/30423878 http://dx.doi.org/10.3390/ma11112240 |
work_keys_str_mv | AT gregorcicpeter longterminfluenceoflaserprocessingparametersonsuperhydrophobicitydevelopmentandstabilityofstainlesssteelsurfaces AT conradimarjetka longterminfluenceoflaserprocessingparametersonsuperhydrophobicitydevelopmentandstabilityofstainlesssteelsurfaces AT hribarluka longterminfluenceoflaserprocessingparametersonsuperhydrophobicitydevelopmentandstabilityofstainlesssteelsurfaces AT hocevarmatej longterminfluenceoflaserprocessingparametersonsuperhydrophobicitydevelopmentandstabilityofstainlesssteelsurfaces |