Cargando…
Transfer Tiling of Nanostructures for Large-Area Fabrication
The fabrication of nanoscale patterns over a large area has been considered important but difficult, because there are few ways to satisfy both conditions. Previously, visually tolerable tiling (VTT) for fabricating nanopatterns for optical applications has been reported as a candidate for large are...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266267/ https://www.ncbi.nlm.nih.gov/pubmed/30715068 http://dx.doi.org/10.3390/mi9110569 |
Sumario: | The fabrication of nanoscale patterns over a large area has been considered important but difficult, because there are few ways to satisfy both conditions. Previously, visually tolerable tiling (VTT) for fabricating nanopatterns for optical applications has been reported as a candidate for large area fabrication. The essence of VTT is the inevitable stitching of the nanoscale optical component, which is not seen by the naked eye if the boundary is very narrow while the tiles are overlapped. However, it had been difficult to control the shape of the spread of liquid prepolymers in the previous work, and there was room for the development of tiling. Here, we propose a method for transferring various shapes of tiles, which can be defined with a shadow mask. The method of using a transparent shadow mask can provide a wide process window, because it allows the spreading of a liquid prepolymer to be more easily controlled. We optimize the coating condition of a liquid prepolymer and the ultraviolet (UV) exposure time. Using this method, we can attach tiles of various shapes without a significant visible trace in the overlapped region. |
---|