Cargando…
Effect of Electropulsing Treatment on the Fatigue Crack Growth Behavior of Copper
Crack propagation was quantitatively evaluated to investigate the effect of electropulsing treatment (EPT) on fatigue crack growth of copper specimens. Varying fatigue cycles were obtained under six different load levels. The crack lengths were measured under two load levels to examine the effect of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266555/ https://www.ncbi.nlm.nih.gov/pubmed/30400171 http://dx.doi.org/10.3390/ma11112168 |
Sumario: | Crack propagation was quantitatively evaluated to investigate the effect of electropulsing treatment (EPT) on fatigue crack growth of copper specimens. Varying fatigue cycles were obtained under six different load levels. The crack lengths were measured under two load levels to examine the effect of cyclic stress. The microhardness was measured around the vicinity of the crack tip. Furthermore, the fracture surface was observed by scanning electron microscopy. Results show that EPT with electric current density of 150 A/mm(2) enhances the high-cycle fatigue life, and the effect tends to increase with the decrease in cyclic stress. Vickers microhardness (HV) near the crack tip decreases to normal levels after treatment, and the approaching cracks on two sides can be observed. Local annealing and recrystallization occur around the fatigue crack tip. Accordingly, crack propagation can be delayed, and fatigue life can be prolonged by EPT. |
---|