Cargando…
Synthesis of Reduced Graphene Oxide with Adjustable Microstructure Using Regioselective Reduction in the Melt of Boric Acid: Relationship Between Structural Properties and Electrochemical Performance
The melt of H(3)BO(3) was used to reach a controllable reduced graphene oxide (rGO) synthesis protocol using a graphene oxide (GO) precursor. Thermogravimetric analysis and differential scanning calorimetry (TG/DSC) investigation and scanning electron microscopy (SEM) images have shown that differen...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266621/ https://www.ncbi.nlm.nih.gov/pubmed/30388766 http://dx.doi.org/10.3390/nano8110889 |
_version_ | 1783375881054453760 |
---|---|
author | Gaidukevič, Justina Pauliukaitė, Rasa Niaura, Gediminas Matulaitienė, Ieva Opuchovič, Olga Radzevič, Aneta Astromskas, Gvidas Bukauskas, Virginijus Barkauskas, Jurgis |
author_facet | Gaidukevič, Justina Pauliukaitė, Rasa Niaura, Gediminas Matulaitienė, Ieva Opuchovič, Olga Radzevič, Aneta Astromskas, Gvidas Bukauskas, Virginijus Barkauskas, Jurgis |
author_sort | Gaidukevič, Justina |
collection | PubMed |
description | The melt of H(3)BO(3) was used to reach a controllable reduced graphene oxide (rGO) synthesis protocol using a graphene oxide (GO) precursor. Thermogravimetric analysis and differential scanning calorimetry (TG/DSC) investigation and scanning electron microscopy (SEM) images have shown that different from GO powder, reduction of GO in the melt of H(3)BO(3) leads to the formation of less disordered structure of basal graphene planes. Threefold coordinated boron atom acts as a scavenger of oxygen atoms during the process of GO reduction. Fourier-transform infrared (FTIR) spectra of synthesized products have shown that the complex of glycerol and H(3)BO(3) acts as a regioselective catalyst in epoxide ring-opening reaction and suppress the formation of ketone C=O functional groups at vacancy sites. Thermal treatment at 800 °C leads to the increased concentration of point defects in the backbone structure of rGO. Synthesized materials were tested electrochemically. The electrochemical performance of these materials essentially differs depending on the preparation protocol. The highest charge/discharge rate and double-layer capacitance were found for a sample synthesized in the melt of H(3)BO(3) in the presence of glycerol and treated at 800 °C. The effect of optimal porosity and high electrical conductivity on the electrochemical performance of prepared materials also were studied. |
format | Online Article Text |
id | pubmed-6266621 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62666212018-12-06 Synthesis of Reduced Graphene Oxide with Adjustable Microstructure Using Regioselective Reduction in the Melt of Boric Acid: Relationship Between Structural Properties and Electrochemical Performance Gaidukevič, Justina Pauliukaitė, Rasa Niaura, Gediminas Matulaitienė, Ieva Opuchovič, Olga Radzevič, Aneta Astromskas, Gvidas Bukauskas, Virginijus Barkauskas, Jurgis Nanomaterials (Basel) Article The melt of H(3)BO(3) was used to reach a controllable reduced graphene oxide (rGO) synthesis protocol using a graphene oxide (GO) precursor. Thermogravimetric analysis and differential scanning calorimetry (TG/DSC) investigation and scanning electron microscopy (SEM) images have shown that different from GO powder, reduction of GO in the melt of H(3)BO(3) leads to the formation of less disordered structure of basal graphene planes. Threefold coordinated boron atom acts as a scavenger of oxygen atoms during the process of GO reduction. Fourier-transform infrared (FTIR) spectra of synthesized products have shown that the complex of glycerol and H(3)BO(3) acts as a regioselective catalyst in epoxide ring-opening reaction and suppress the formation of ketone C=O functional groups at vacancy sites. Thermal treatment at 800 °C leads to the increased concentration of point defects in the backbone structure of rGO. Synthesized materials were tested electrochemically. The electrochemical performance of these materials essentially differs depending on the preparation protocol. The highest charge/discharge rate and double-layer capacitance were found for a sample synthesized in the melt of H(3)BO(3) in the presence of glycerol and treated at 800 °C. The effect of optimal porosity and high electrical conductivity on the electrochemical performance of prepared materials also were studied. MDPI 2018-11-01 /pmc/articles/PMC6266621/ /pubmed/30388766 http://dx.doi.org/10.3390/nano8110889 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gaidukevič, Justina Pauliukaitė, Rasa Niaura, Gediminas Matulaitienė, Ieva Opuchovič, Olga Radzevič, Aneta Astromskas, Gvidas Bukauskas, Virginijus Barkauskas, Jurgis Synthesis of Reduced Graphene Oxide with Adjustable Microstructure Using Regioselective Reduction in the Melt of Boric Acid: Relationship Between Structural Properties and Electrochemical Performance |
title | Synthesis of Reduced Graphene Oxide with Adjustable Microstructure Using Regioselective Reduction in the Melt of Boric Acid: Relationship Between Structural Properties and Electrochemical Performance |
title_full | Synthesis of Reduced Graphene Oxide with Adjustable Microstructure Using Regioselective Reduction in the Melt of Boric Acid: Relationship Between Structural Properties and Electrochemical Performance |
title_fullStr | Synthesis of Reduced Graphene Oxide with Adjustable Microstructure Using Regioselective Reduction in the Melt of Boric Acid: Relationship Between Structural Properties and Electrochemical Performance |
title_full_unstemmed | Synthesis of Reduced Graphene Oxide with Adjustable Microstructure Using Regioselective Reduction in the Melt of Boric Acid: Relationship Between Structural Properties and Electrochemical Performance |
title_short | Synthesis of Reduced Graphene Oxide with Adjustable Microstructure Using Regioselective Reduction in the Melt of Boric Acid: Relationship Between Structural Properties and Electrochemical Performance |
title_sort | synthesis of reduced graphene oxide with adjustable microstructure using regioselective reduction in the melt of boric acid: relationship between structural properties and electrochemical performance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266621/ https://www.ncbi.nlm.nih.gov/pubmed/30388766 http://dx.doi.org/10.3390/nano8110889 |
work_keys_str_mv | AT gaidukevicjustina synthesisofreducedgrapheneoxidewithadjustablemicrostructureusingregioselectivereductioninthemeltofboricacidrelationshipbetweenstructuralpropertiesandelectrochemicalperformance AT pauliukaiterasa synthesisofreducedgrapheneoxidewithadjustablemicrostructureusingregioselectivereductioninthemeltofboricacidrelationshipbetweenstructuralpropertiesandelectrochemicalperformance AT niauragediminas synthesisofreducedgrapheneoxidewithadjustablemicrostructureusingregioselectivereductioninthemeltofboricacidrelationshipbetweenstructuralpropertiesandelectrochemicalperformance AT matulaitieneieva synthesisofreducedgrapheneoxidewithadjustablemicrostructureusingregioselectivereductioninthemeltofboricacidrelationshipbetweenstructuralpropertiesandelectrochemicalperformance AT opuchovicolga synthesisofreducedgrapheneoxidewithadjustablemicrostructureusingregioselectivereductioninthemeltofboricacidrelationshipbetweenstructuralpropertiesandelectrochemicalperformance AT radzevicaneta synthesisofreducedgrapheneoxidewithadjustablemicrostructureusingregioselectivereductioninthemeltofboricacidrelationshipbetweenstructuralpropertiesandelectrochemicalperformance AT astromskasgvidas synthesisofreducedgrapheneoxidewithadjustablemicrostructureusingregioselectivereductioninthemeltofboricacidrelationshipbetweenstructuralpropertiesandelectrochemicalperformance AT bukauskasvirginijus synthesisofreducedgrapheneoxidewithadjustablemicrostructureusingregioselectivereductioninthemeltofboricacidrelationshipbetweenstructuralpropertiesandelectrochemicalperformance AT barkauskasjurgis synthesisofreducedgrapheneoxidewithadjustablemicrostructureusingregioselectivereductioninthemeltofboricacidrelationshipbetweenstructuralpropertiesandelectrochemicalperformance |