Cargando…

Application of Glycation in Regulating the Heat-Induced Nanoparticles of Egg White Protein

Due to the poor thermal stability of egg white protein (EWP), important challenges remain regarding preparation of nanoparticles for EWP above the denaturation temperature at neutral conditions. In this study, nanoparticles were fabricated from conjugates of EWP and isomalto-oligosaccharide (IMO) af...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chenying, Ren, Xidong, Su, Yujie, Yang, Yanjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266673/
https://www.ncbi.nlm.nih.gov/pubmed/30445790
http://dx.doi.org/10.3390/nano8110943
Descripción
Sumario:Due to the poor thermal stability of egg white protein (EWP), important challenges remain regarding preparation of nanoparticles for EWP above the denaturation temperature at neutral conditions. In this study, nanoparticles were fabricated from conjugates of EWP and isomalto-oligosaccharide (IMO) after heating at 90 °C for 30 min. Meanwhile, the effects of protein concentration, temperature, pH, ionic strength and degree of glycation (DG) on the formation of nanoparticles from IMO-EWP were investigated. To further reveal the formation mechanism of the nanoparticles, structures, thermal denaturation properties and surface properties were compared between EWP and IMO-EWP conjugates. Furthermore, the emulsifying activity index (EAI) and the emulsifying stability index (ESI) of nanoparticles were determined. The results indicated that glycation enhanced thermal stability and net surface charge of EWP due to changes in the EWP structure. The thermal aggregation of EWP was inhibited significantly by glycation, and enhanced with a higher degree of glycation. Meanwhile, the nanoparticles (<200 nm in size) were obtained at pH 3.0, 7.0 and 9.0 in the presence of NaCl. The increased thermal stability and surface net negative charge after glycation contributed to the inhibition. The EAI and ESI of nanoparticles were increased nearly 3-fold and 2-fold respectively, as compared to unheated EWP.