Cargando…
What you can see by developing real-time radioisotope imaging system for plants: from water to element and CO(2) gas imaging
Since plants live on inorganic elements, absorbing ions from roots and transferring them to each tissue in a plant is an essential activity. However, little is known about the movement of the elements or water in plant tissue. Though fluorescent imaging is now overwhelmingly used at the microscopic...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267115/ https://www.ncbi.nlm.nih.gov/pubmed/30546186 http://dx.doi.org/10.1007/s10967-018-6324-0 |
Sumario: | Since plants live on inorganic elements, absorbing ions from roots and transferring them to each tissue in a plant is an essential activity. However, little is known about the movement of the elements or water in plant tissue. Though fluorescent imaging is now overwhelmingly used at the microscopic level in biology, especially to visualize chemicals or organelles in a cell, radioisotope imaging has become one of the important methods for human imaging in the medical field. In the case of plant studies, however, real-time radioisotope imaging is little-known among plant researchers. The author has developed radioisotope imaging systems using various radioisotopes to study living plant activity, both for elements and for water. Here we review the real-time radioisotope imaging methods we developed, and show new aspects of plant physiology discovered by live imaging. |
---|