Cargando…

Unicortical self-drilling external fixator pins reduce thermal effects during pin insertion

INTRODUCTION: External fixation is associated with the risk of pin loosening and pin infection potentially associated to thermal bone necrosis during pin insertion. OBJECTIVE: This study aims to investigate if the use of external fixator systems with unicortical pins reduces the heat production duri...

Descripción completa

Detalles Bibliográficos
Autores principales: Greinwald, Markus, Varady, Patrick A., Augat, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267143/
https://www.ncbi.nlm.nih.gov/pubmed/29242952
http://dx.doi.org/10.1007/s00068-017-0887-2
Descripción
Sumario:INTRODUCTION: External fixation is associated with the risk of pin loosening and pin infection potentially associated to thermal bone necrosis during pin insertion. OBJECTIVE: This study aims to investigate if the use of external fixator systems with unicortical pins reduces the heat production during pin insertion compared to fixators with bicortical pins. METHODS: Porcine bone specimens were employed to determine bone temperatures during insertion of fixator pins. Two thermographic cameras were used for a simultaneous temperature measurement on the bone surface (top view) and a bone cross-section (front view). Self-drilling unicortical and bicortical pins were inserted at different rotational speeds: (30–600) rpm. Maximum and mean temperatures of the emerging bone debris, bone surface and bone cross-section were analyzed. RESULTS: Maximum temperatures of up to 77 ± 26 °C were measured during pin insertion in the emerging debris and up to 42 ± 2 °C on the bone surface. Temperatures of the emerging debris increased with increasing rotational speeds. Bicortical pin insertion generated significantly higher temperatures at low insertion speed (30 rpm) CONCLUSION: The insertion of external fixator pins can generate a considerable amount of heat around the pins, primarily emerging from bone debris and at higher insertion speeds. Our findings suggest that unicortical, self-drilling fixator pins have a decreased risk for thermal damage, both to the surrounding tissue and to the bone itself.